Abstract — Effects of unmodeled high frequency dynamics on stability and performance of adaptive control schemes are analyzed. In the regulation problem global stability properties are no longer guaranteed, but a region of attraction exists for exact adaptive regulation. The dependence of the region of attraction on unmodeled parasitics is examined first. Then the general case of model reference adaptive control is considered in which parasitics can destroy stability and boundedness properties. A modified adaptive law is proposed guaranteeing the existence of a region of attraction from which all signals converge to a residual set which contains the equilibrium for exact tracking. The size of this set depends on design parameters, the frequency range of parasitics, and the reference input signal characteristics.

INTRODUCTION

Global stability of adaptive control systems, an open problem for almost two decades, was recently solved for both continuous and discrete SISO (single-input single-output) systems [1]-[5]. However, there still remains a significant gap between the available theoretical methodologies and the potential applications of such adaptive schemes. Global stability properties are guaranteed under the “matching assumption” that the model order is not lower than the order of the unknown plant. Since this restrictive assumption is likely to be violated in applications, it is important to determine the robustness of adaptive schemes with respect to such modeling errors.

Several attempts have been made to formulate and analyze reduced-order adaptive systems. Specific results such as error boundedness have been obtained for adaptive observers and identifiers [6]-[10]. In [11] local stability has been proved for a reduced-order indirect adaptive regulator. Efforts on reduced-order direct adaptive control [12], [13] concentrated on simple examples where it was shown by “linearization” [12] or demonstrated by simulations [13] that unmodeled parasitics can lead to an unstable closed-loop system. Analysis [6], [9] of the effects of high frequency plant inputs on the performance of identifiers and adaptive observers with parasitics has determined that the inputs should be restricted to dominantly rich inputs. As a design concept, the dominant richness requires that in the presence of parasitics the richness condition be satisfied outside the parasitic range. It excludes wideband inputs such as noise and square waves as undesirable. The situation in adaptive control is more difficult because the plant input is generated by adaptive feedback which incorporates the unknown plant with parasitics. The schemes proposed thus far do not contain a mechanism to restrict the frequency content of the plant input. The lack of this mechanism has caused the loss of robustness reported in [12], [13].

The two main results of this paper are: first, an estimate of the region of attraction for adaptive regulation, and second, a modification of the adaptive laws to guarantee boundedness in the case of tracking. The frequency content and magnitude of the reference input signal, the speed ratio μ of slow versus fast phenomena, the adaptive gain, and initial conditions are shown to have crucial effects on the stability of the adaptive control schemes. These results are first analytical conditions for robustness of direct adaptive control with respect to high frequency dynamics. They are obtained for a continuous-time SISO adaptive control scheme [1]. The same methodology can be extended to more complicated continuous and discrete-time adaptive control problems. The paper is organized in two main sections. The first section contains a simple motivating scalar example which illustrates the salient features of the general methodology developed in the second section.

THE SCALAR REDUCED-ORDER ADAPTIVE CONTROL PROBLEM

We start with a simple example of reduced-order adaptive control in which the output y_p of a second-order plant

$$\dot{y}_p = a_p y_p + 2z - u, \quad (1.1)$$
$$\mu \dot{z} = -z + u, \quad (1.2)$$

with unknown constant parameters a_p and μ, is required to track the state y_m of a first-order model

$$\dot{y}_m = -a_m y_m + r, \quad a_m > 0 \quad (1.3)$$

where u is the control input and $r = r(t)$ is a reference input, a uniformly bounded function of time. This example serves as a motivation for and an introduction to the general methodology to be developed in the next section. As in our earlier work [6], the model–plant mismatch is due to some “parasitic” time constants which appear as multiples of a singular perturbation parameter μ and introduce the “parasitic” state η. In (1.1), (1.2) the parasitic state is defined as $\eta = z - u$ resulting into the following representation:

$$\dot{\eta}_p = a_p y_p + 2\eta + u \quad (1.4)$$
$$\mu \dot{\eta} = -\eta - \mu \dot{u} \quad (1.5)$$

where the “dominant” part (1.4) and “parasitic” part (1.5) of the plant appear explicitly.

If we apply to the plant with parasitics (1.4), (1.5) the same adaptive law which we would have applied to the plant without parasitics; that is, if we use the control

$$u = -K(t) y_p + r(t) \quad (1.6)$$

and the adaptive law

$$\dot{K} = -\gamma e_p \quad \gamma > 0, \quad (1.7)$$

Manuscript received May 7, 1982; revised March 17, 1983. Paper recommended by G. C. Goodwin, Past Chairman of the Adaptive, Learning Systems, Pattern Recognition Committee. This work was supported in part by the U.S. Air Force under Grant AFOSR 78-3633, the Joint Services Electronics Program under Contract N00014-79-C-0424, Ford Motor Company, and by the U.S. Department of Energy under Contract DE-AC01-81RA50568 with Dynamic Systems, Urbana, IL 61801.

P. A. Ioannou is with the University of Southern California, Los Angeles, CA 90089-0781.

P. K. Kokotovic is with the Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801.
we obtain
\[
\dot{e} = -a_\mu e - (K(t) - K^*)(e + y_m) + 2\eta \quad (1.8)
\]
\[
\mu \dot{y} = -\eta + \mu \left[\gamma e (e + y_m)^2 - K(K - a_p)(e + y_m)
+ 2K\eta + Kr - \bar{r} \right] \quad (1.9)
\]
\[
\dot{K} = \gamma e (e + y_m) \quad (1.10)
\]
where
\[
e = y_p - y_m, \quad K^* = a_m + a_p. \quad (1.11)
\]

The existing theory of adaptive control [14, 15] guarantees stability properties for the case without parasitics \(\mu = 0 \), when (1.8)-(1.10) reduce to
\[
\dot{e} = -a_\mu e - (\bar{K}(t) - K^*)(e + y_m) \quad (1.12)
\]
\[
\dot{K} = \gamma e (e + y_m). \quad (1.13)
\]

Lemma 1: For any bounded initial conditions \(\dot{e}(0), \bar{K}(0) \) the solution \(\dot{e}(t), \bar{K}(t) \) of (1.12), (1.13) is bounded and \(\lim_{t \to \infty} \dot{e}(t) = 0, \lim_{t \to \infty} \bar{K}(t) = K_i \) where constant \(K_i \) is in general a function of \(\dot{e}(0), \bar{K}(0) \). Furthermore, if \(r(t) \) is sufficiently rich, then \(\lim_{t \to \infty} K(t) = K^* \), independent of \(\dot{e}(0), \bar{K}(0) \).

The above example illustrates some of the robustness questions to be answered in this paper. Given that the adaptive system without parasitics, in this case (1.12), (1.13), possesses properties such as in Lemma 1, how will these properties be altered by the parasitics, that is, what are the stability properties of (1.8)-(1.10)? Which modification of the adaptive law would help to preserve some of the desirable properties? The perturbation parameter \(\mu \) provides us with a means to answer such questions in a quantitative way using the orders of magnitude of some of the desirable properties? The perturbation parameter \(\mu \) implies that the parasitics are fast, and that neglecting them, \(\mu = 0 \), we concentrate on the slow, that is, the "dominant," part of the plant.

As we shall see, a first property to be lost due to parasitics is global stability. In the case of regulation, that is, when \(y_m(t) = 0, r(t) = 0 \), the boundedness of the solutions \(e(t), K(t) \) and the convergence of \(e(t) \) to zero as \(t \to \infty \) is preserved, but is not global. It possesses a domain of attraction whose size we describe by estimating the orders of magnitudes of the axes of an ellipsoid \(D(\mu) \). In the tracking problem, when \(r(t) \neq 0 \) the adaptive system with parasitics such as (1.8)-(1.10) may not converge to or may not even possess an equilibrium. A practical goal is then to guarantee some boundedness properties. We show that a redesign, which may sacrifice some properties of the ideal system without parasitics, results in the convergence from any point in \(D(\mu) \) to a uniformly bounded residual set \(D_0(\mu) \). The design objective is then to make \(D(\mu) \) as large as possible and \(D_0(\mu) \) as small as possible. Let us illustrate this discussion by analyzing the regulation problem and the tracking problem for the example (1.1)-(1.3).

A. Regulation

In the regulation problem expressions (1.8)-(1.10) become
\[
r(t) = 0, \quad y_m(t) = 0, \quad e(t) = y_p(t) \quad (1.14)
\]
\[
\dot{y}_p = a_p y_p + u + 2\eta \quad (1.15)
\]
\[
\mu \dot{y} = -\eta - \mu u \quad (1.16)
\]
\[
u = -K(t) y_p \quad (1.17)
\]
\[
\dot{K} = \gamma y_p^2 \quad (1.18)
\]

and the objective is to drive \(y_p \) to zero despite the presence of parasitics while assuring that all the signals in the closed-loop system (1.15)-(1.18) remain bounded. It is important to note that the open-loop system (1.15), (1.16) might not be stabilizable by constant gain output feedback for a given value of \(\mu \). If this is the case, then there is no hope that the adaptive controller (1.17), (1.18) will stabilize the equilibrium of (1.15), (1.16). The following lemma characterizes parasitics for which a linear output stabilizing feedback law exists.

Lemma 2: There exists a \(\mu > 0 \) and a constant \(K_0 \) such that for all \(\mu \in (0, \mu_1] \) the system (1.15), (1.16) with the feedback law
\[
u = -K_0 y_p \quad (1.19)
\]
is an asymptotically stable closed-loop system. Furthermore,
\[
\mu_1 \leq \frac{1}{2a_p} \quad (1.20)
\]

and
\[
\frac{1}{\mu} - a_p > K_0 > a_p. \quad (1.21)
\]

We now establish the stability properties of the adaptive control system (1.15)-(1.18) for \(\mu < \mu_1 \).

Theorem 1: There exists \(\mu^* < \mu_1 \) and positive numbers \(c_1, c_2, c_3 \) such that for each \(\mu \in (0, \mu^*) \) any solution \(y_p(t), \eta(t), K(t) \) of (1.15)-(1.18) starting from the set
\[
D(\mu) = \left\{ y_p, \eta, K : |y_p| + |K| < c_1 \mu^{-a}, |\eta| < c_2 \mu^{-a-1/2} \right\} \quad (1.22)
\]
is bounded and \(y_p(t) \to 0, \eta(t) \to 0, K(t) \to \text{constant as } t \to \infty \).

Proof: Let \(\bar{K}_1 > a_p \) be a finite constant and consider the function
\[
V(y_p, \eta, K) = \frac{1}{2} y_p^2 + \frac{K - K_1}{2\gamma} + \frac{\mu}{2} (\eta + 2y_p)^2. \quad (1.23)
\]

Observe that for each \(\mu > 0, c > 0, a > 0 \) the equality
\[
V(y_p, \eta, K) = c \mu^{-2a} \quad (1.24)
\]
defines a closed surface \(\mathcal{S}(\mu, a, c) \) in \(R^3 \). The time derivative of \(V(y_p, \eta, K) \) along the solution of (1.15)-(1.18) is
\[
\dot{V}(y_p, \eta, K) = - (K_1 - a_p) y_p^2 - \eta^2 + \mu (\eta + 2y_p) \left(\gamma y_p^3 + Ka_p y_p + 2a_p y_p - 2K_1 y_p - K^2 y_p + 2K \eta + 4\eta \right). \quad (1.25)
\]

From (1.25) we have
\[
\dot{V}(y_p, \eta, K) \leq -y_p^2 \left[\beta - \mu \left(2\gamma y_p^2 + 2|K| a_p + 4a_p + 4|K| + 2|K|^2 \right) \right] + \frac{\mu^2}{2} \left(4|K| + 8 + 2y_p^2 + a_p |K| + 2a_p + 2|K| + |K|^2 \right)^2 \right) \}
\]
\[
- \eta^2 \left[\frac{4}{2} - 2\mu |K| - 4\mu \right] - \frac{1}{2} \left(\eta - \mu \left(4|K| + 8 + 4y_p^2 \right) \right)^2
\]
\[
+ a_p |K| + 2a_p + 2|K| + |K|^2 \right) |y_p|^2 \quad (1.26)
\]
where \(\beta = K_1 - a_p > 0 \).

Inside \(\mathcal{S}(\mu, a, c) \), \(|y_p|, |K| \) can grow up to \(O(\mu^{-a}) \), whereas \(|\eta| \) can grow up to \(O(\mu^{-1/2-a}) \). Therefore, there exist constants
For y, K, η inside $S(f, \mu, c)$, (1.26) is simplified to

$$V'(y, q, K) \leq -y_p \left[-\beta - \delta_1 y_p^{1-2\alpha} - \delta_2 y_p^{2(1-2\alpha)} \right]$$

for some positive constants δ_1, δ_2.

Choosing $\alpha < 1/2$ we can find a $\mu^* > 0$ such that for any $\mu \in (0, \mu^*)$

$$\beta > \delta_1 y_p^{1-2\alpha} + \delta_2 y_p^{2(1-2\alpha)}, \quad \frac{1}{2} > 2 p y_p^{1-\alpha} + 4 \mu.$$

Therefore, $V'(y, q, K) \leq 0$ for each $\mu \in (0, \mu^*)$ and all y, q, K enclosed in $S(f, \mu, c)$, and $V = 0$ only at the equilibrium $y_p = 0, q = 0, K = \text{constant}$. Moreover, there exist positive constants c_1, c_2, such that the set $D(\mu)$ given by (1.22) is enclosed by the surface $S(f, \mu, c)$ and any solution of (1.15)-(1.18) starting from $D(\mu)$ remains inside $S(f, \mu, c)$. Furthermore, inside $S(f, \mu, c)$, $V(y, q, K)$ is a nonincreasing function of time which is bounded from below, and hence converges to a finite value V_f. Since $V'(y, q, K)$ is bounded, $V(y, q, K)$ is uniformly continuous for all y, q, K enclosed in $S(f, \mu, c)$ and $t > 0$. Therefore, $\lim_{t \to \infty} V(y, q, K) = 0$, i.e., $y \to 0$, $q \to 0$, and $K \to \text{constant}$ as $t \to \infty$.

Remark 1: It can also be shown that increasing adaptive gain γ for a fixed μ reduces the size of the domain $D(\mu)$ and the stability properties of Theorem 1 can no longer be guaranteed if $\gamma \geq 0(1/\mu)$.

Remark 2: As $\mu \to 0$, domain $D(\mu)$ becomes the whole space R^3; that is, the adaptive regulation problem (1.15)-(1.18) is well posed with respect to parasitics.

Remark 3: Theorem 1 is more than a local result because it shows that given any bounded initial condition $y_p(0), q(0), K(0)$, there always exist μ^* such that for each $\mu \in (0, \mu^*)$ the solution of (1.15)-(1.18) is bounded and $y \to 0, q \to 0, K \to \text{constant}$ as $t \to \infty$.

Remark 4: Since Theorem 1 is only a sufficient condition it is of interest to examine whether the stability properties of Lemma 1 are indeed lost for initial conditions outside the set (1.22). From Lemma 2 and the fact that $K(t)$ is nondecreasing it can be seen that instability occurs if $K(0) > (1/\mu) - a_p$.

As an illustration of the stability properties established by Theorem 1, simulation results for (1.15)-(1.18) with $a_p = 4$ and different values of μ, γ and initial conditions are plotted in Figs. 1-4. In addition to $y_p(t), \mu(t), y_p(t), K(t)$ with $K_1 = 7$ is plotted against time to show whether all the signals in the closed loop remain bounded. In Fig. 1 where $\mu = 0.05, \gamma = 5, y_p(0) = 1, q(0) = 1.0, K(0) = 3$, the objective of the regulator is achieved since $y_p \to 0$ and μ is bounded. Increasing $y_p(0)$ from 1 to 2.4 and keeping all the other conditions the same as in Fig. 1, the regulator fails its objective and $y \to \infty$ as shown in Fig. 2. With the same initial conditions as in Fig. 1, but with $\mu = 0.07$ instead of $\mu = 0.05, y \to \infty$ as indicated in Fig. 3. Fig. 4 shows the effect of increasing the adaptive gain γ. With the same initial conditions as in Fig. 1, but with $\gamma = 30$ instead of $\gamma = 5$, regulation fails and $y \to \infty$.

B. Tracking

Returning now to the tracking problem we note that for a general $r(t) \neq 0$ system (1.8)-(1.10) need not possess an equilibrium. The best we can expect to achieve in this case is to guarantee that the solutions starting in $D(\mu)$ remain bounded and converge to a residual set $D_0(\mu)$.

To prove such a result we modify the adaptive law (1.10) as

$$\dot{K} = -\sigma K + \gamma e(e + y_m)$$

where σ is a positive design parameter. In view of (1.27) the equations describing the stability properties of the tracking problem in the presence of parasitics are:

$$\dot{e} = -a_m e - (K(t) - K^*) (e + y_m) + 2\eta$$

$$\dot{\mu} = -\eta + \mu \left[\gamma e(e + y_m)^2 - K(K - a_p - \sigma)(e + y_m) \right] + 2 K \eta + K r + K$$

$$\dot{K} = -\sigma K + \gamma e(e + y_m).$$
Equation (1.36) can be rewritten as

\[
\dot{V}(e, \eta, K) = -e^2 \left[\frac{a_m}{4} - \mu \left(2y_0^2 + 4\gamma y_m^2 + 2\gamma \right)^2 - K^2 \right] \\
+ 2Ka_p - 4a_m - 4K + 4K^* + 2K \sigma \\
- \mu^2 \left(4K + 8 + \gamma \right)^2 + 2\gamma y_m^2 \\
+ K^2 + Ka_p - 2a_m - 2K + 2K^* + 2K^* \\
- \frac{1}{4} \left[\left(\eta - 2\mu \eta K y_m + r - 2y_m + \sigma y_m \right)^2 \\
+ \left(K - K^* \right)^2 - \eta \left(\frac{1}{8} - \mu \right) \left(4 + 2K \right) \right] \\
- \frac{a_m}{4} \left(e - \mu \right) \left(a_p y_m y_m^2 - 2y_m + \sigma y_m \right)^2 \\
- \frac{a_m}{4} \left(e - \mu \right) \left(2K y_m - r \right)^2 - \frac{a_m}{4} \left(e - \mu \right)^2 - \frac{\eta^2}{8} \\
- \frac{\sigma}{2\gamma} \left(K - K^* \right)^2 - K^2 \left(\frac{\sigma}{2\gamma} - \mu^2 \right) \frac{4 + a_m}{a_m} \\
+ \left(a_p y_m y_m^2 - 2y_m + \sigma y_m \right)^2 \\
+ \mu^2 \left(1 + 4 \frac{a_m}{a_m} \right) \left(2K y_m - r \right)^2.
\]
indicating that the desired closed-loop system has to be slower.

Hence, for each \(\mu \in (0, \mu^*] \) and all \(e, \eta, K \) inside \(\mathcal{S}(\mu, \alpha, c_0) \)

\[
\dot{V}(e, \eta, K) < -\frac{a_m}{4}|e|^2 - \frac{|\eta|^2}{8} - \frac{\sigma}{2\gamma}|K - K^*|^2 + \frac{|K\eta|^2}{2\gamma} + \mu^2 \left(1 + \frac{4}{a_m} \right) 2K^* y_m - r^2. \tag{1.42}
\]

Since \(r, \tau \) are uniformly bounded the set \(\mathcal{D}_0(\mu) \) is uniformly bounded and is enclosed by \(\mathcal{S}(\mu, \alpha, c_0) \). Outside \(\mathcal{D}_0(\mu) \) and inside \(\mathcal{S}(\mu, e, c_0) \), \(V'(e, \eta, K) < 0 \), and therefore \(V(e, \eta, K) \) decreases. Hence, there exists positive constants \(c_1, c_2 \) such that the set \(\mathcal{D}(\mu) \) is enclosed by \(\mathcal{S}(\mu, \alpha, c_0) \) and any solution \(e(t), K(t), \eta(t) \) which starts in \(\mathcal{D}(\mu) \) remains inside \(\mathcal{S}(\mu, \alpha, c_0) \). Furthermore, there exist constants \(c_3 \geq 1 \) and \(t_1 \) such that every solution of (1.28)-(1.30) starting at \(t = 0 \) from \(\mathcal{D}(\mu)/\mathcal{D}_0(\mu) \) will enter \(\mathcal{D}_0(\mu) \) at \(t = t_1 \) and remain in \(\mathcal{D}_0(\mu) \) thereafter. Similarly, any solution starting at \(t = 0 \) from \(\mathcal{D}_0(\mu) \) will remain in \(\mathcal{D}_0(\mu) \) for all \(t > 0 \).

Remark 5: The set \(\mathcal{D}_0(\mu) \) depends on \(r_1 \) and \(r_2 \), i.e., the bounds for the magnitude and frequency content of the reference input signal. For a given \(\mu \) an increase in \(|r| \) or \(|\rho| \) can no longer guarantee that \(\dot{V}(e, \eta, K) < 0 \) everywhere in \(\mathcal{D}(\mu)/\mathcal{D}_0(\mu) \). For this reason, our formulation excludes high frequency or high amplitude reference input signals such as square or random waveforms, the traditional favorites of the adaptive control literature.

Remark 6: It can also be shown that increasing the adaptive gain \(\gamma \) for given \(\mu, r, \) and \(\tau \) reduces the size of the domain \(\mathcal{D}(\mu) \). For \(\gamma > 0(1/\mu) \) the stability properties of Theorem 2 can no longer be guaranteed.

Remark 7: The analysis in the proof of Theorem 2 shows that the use of \(\sigma \) is essential in obtaining sufficient conditions for the presence of parasitics. However, in the absence of parasitics \(\mu = 0, \sigma > 0 \) causes an output error of \(0/(\sigma \gamma) \). This is a tradeoff between boundedness of all signals in the presence of parasitics and the loss of exact convergence of the output error to zero in the absence of parasitics. The size of \(\sigma \) reflects our ignorance about \(\mu \). For high frequency parasitics \(\mu \) is small, and therefore \(\sigma \) can be small.

Remark 8: Conditions (1.20), (1.21) of Lemma 2 specify the relation between the range of parasitics and the open-loop and desired closed-loop poles. From (1.21) we can see that for a desired closed-loop pole \(a_m \), the gain \(K(t) \) has to converge to \(K^* = a_m + a_p \). which has to satisfy

\[
\frac{1}{2} a_p > K^* > a_p. \tag{1.43}
\]

From (1.43) it is clear that \(a_m \) should satisfy

\[
\frac{1}{2} 2a_p > a_m > 0 \tag{1.44}
\]

indicating that the desired closed-loop system has to be slower than the fast subsystem. Therefore, for stability the poles of the reference model have to be chosen away from the parasitic range.

It is of interest to examine whether for initial conditions outside the set \(\mathcal{D}(\mu) \) we can loose boundedness. Simulation results with \(a_p = 4, a_m = 3, \) and \(\gamma = 5 \) are summarized in Figs. 5-12. The evolution of the output error and the function \(V(e, \eta, K) \) versus time are obtained for different initial conditions, \(\mu, \alpha, \) and reference input characteristics. In Fig. 5 the output error \(e \) and function \(V \) are plotted for \(\mu = 0.01, \) \(e(0) = 1, \) \(\eta(0) = 1, K(0) = 3, \) \(\sigma = 0.06, \) and \(r(t) = 3 \sin 2t. \) The output error decreases and remains close to zero. The function \(V \) is strictly decreasing for \(V > 0.05, \) but \(V \) changes sign in the region \(V < 0.05 \) as shown in Fig. 5(b). Keeping the same conditions as in Fig. 5, but increasing \(\mu \) from 0.01 to 0.05 we can still achieve similar results as shown in Fig. 6. However, in this case the steady-state error and \(V \) are larger and \(V \) changes sign for \(V < 0.4. \) Increasing the value of \(\mu \) from 0.05 to 0.08 the output error becomes unbounded for all \(\sigma > 0 \) as indicated in Fig. 7. The effects of the input characteristics are summarized in Figs. 8-10. In Fig. 8, \(\mu = 0.05, e(0) = 1, \eta(0) = 1, K(0) = 3, \sigma = 0.06, \) and \(r(t) = 3 \sin 10t \) results into an unbounded output error due to the increase of the frequency of \(r(t) \) from 2 to 10. The same instability result has been obtained for \(\sigma = 0.0,0.02. \) However, for \(\sigma = 0.08 \) the output error became bounded as shown in Fig. 9 illustrating the beneficial effects of \(\sigma \) when parasitics are present. The effect of the amplitude of the reference input \(r(t) \) is shown in Fig. 10. With \(\mu = 0.05, \sigma = 0 \) or 0.06 and the same initial conditions as before, but with \(r(t) = 15 \sin 2t, \) the output error goes unbounded. Fig. 11 shows the effect of initial conditions on boundedness. By increasing \(e(0) \) from 1 to 2.5 and keeping \(\mu = 0.05, \eta(0) = 1, K(0) = 3, \) and \(r(t) = 3 \sin 2t \) the output error becomes unbounded for all \(\sigma > 0. \) In Fig. 12 we show the loss of exact convergence of the output error to zero in the absence of parasitics \((\mu = 0) \) due to the design parameter \(\sigma. \)

Adaptive Control of a SISO Plant in the Presence of Parasitics

We now consider the general problem of adaptive control of a SISO time-invariant plant of order \(n + m \) where \(n \) is the order of the dominant part of the plant and \(m \) is the order of the parasitics. The plant is assumed to possess slow and fast parts.
and is represented in the explicit singular perturbation form

\[
\dot{x} = A_{11}\dot{x} + A_{12}\eta + b_1u \tag{2.1}
\]

\[
\dot{\eta} = A_{21}\dot{x} + A_{22}\eta + b_2u, \quad \text{Re} \lambda(A_{22}) < 0 \tag{2.2}
\]

\[
y = c_0^\top x \tag{2.3}
\]

where \(x, \eta\) are \(n\) and \(m\) vectors, respectively, and \(u, y\) are the scalar input and output of the plant, respectively. State \(z\) is formed of a “fast transient” and a “quasi-steady state” defined as the solution of (2.2) with \(\dot{\eta} = 0\). This motivates the definition of the fast parasitic state as

\[
\eta = z + A_{22}^{-1}(A_{21}\dot{x} + b_2u). \tag{2.4}
\]

The two important restrictions on the unknown plant are \(\text{Re} \lambda(A_{22}) < 0\) and \(y = c_0^\top x\). The first restriction, which prohibits unstable or oscillatory parasitic modes, is natural and cannot be removed. The second restriction allows the parasitics to be only “weakly observable,” that is observable through the slow part of the plant. For plants with strongly observable parasitics \(y = c_1x + c_2 z\), the static output feedback is nonrobust, that is, it can destabilize a stable plant [16]. In this case a dynamic compensator must be used, containing a low-pass filter. As shown in [9], the original plant with a first-order filter can be represented as an
Augmented plant in the form (2.1)-(2.3) with weakly observable parasitics. Defining

\[
A_0 = A_{11} - A_{12} A_{22}^{-1} A_{21}, \quad b_0 = b_1 - A_{12} A_{22}^{-1} b_1, \\
A_1 = A_{22}^{-1} A_{21} A_0, \quad A_2 = A_{22}^{-1} A_{21} b_0, \\
A_3 = A_{22}^{-1} A_{21} A_{12}, \quad A_4 = A_{22}^{-1} b_2
\]

and substituting (2.4) into (2.1), (2.2) we obtain a representation of (2.1)-(2.3) with the dominant part (2.6) and the parasitic part (2.7) appearing explicitly

\[
\dot{x} = A_0 x + b_0 u + A_{12} \eta
\]

and

\[
\mu \dot{\eta} = A_{22} \eta + \mu (A_1 x + A_2 u + A_3 \eta + A_4 \dot{\eta}) \\
y = c_0^T x.
\]

The output \(y\) of the system (2.6)-(2.8) is required to track the output \(y_m\) of an \(n\)th order reference model

\[
\dot{x}_m = A_m x_m + b_m r \\
y_m = c_m^T x_m
\]

where \(r(t)\) is a uniformly bounded reference input signal. Without loss of generality let us assume that the transfer function \(W_m(s)\) is strictly positive real.

ii) The triple \((A_0, b_0, c_0)\) is completely controllable and completely observable.

\[
W_0(s) = c_0^T (sI - A_0)^{-1} b_0 = K_p N(s) R_m(s)
\]

is strictly positive real.

The reduced-order plant obtained by setting \(\mu = 0\) in (2.6)-(2.8) is assumed to satisfy the following conditions.

i) The triple \((A_0, b_0, c_0)\) is completely controllable and completely observable.

ii) In the transfer function

\[
W_0(s) = c_0^T (sI - A_0)^{-1} b_0 = K_p N(s) R_m(s)
\]

\(N(s)\) is a monic Hurwitz polynomial of degree \(n-1\) and \(D(s)\) is a monic polynomial of degree \(n\). For ease of exposition we assume that \(K_p = K_m = 1\).

The controller structure has the same form as that used in [1] for the parasitic-free plant, that is for \(\mu = 0\) in (2.6)-(2.8). In this controller the plant input \(u\) and measured output \(y\) are used to generate a \((2n-2)\) dimensional auxiliary vector \(v\) as

\[
\begin{align*}
&\dot{\theta}_1 = \Lambda \dot{v}_1 + gu \\
&W_1 = c^T(t) v_1 \\
&\dot{v}_2 = \Lambda \dot{v}_2 + gy \\
&W_2 = d_0(t) y + d^T(t) v_2
\end{align*}
\]

where \(\Lambda\) is an \((n-1)\times(n-1)\) stable matrix and \((\Lambda, g)\) is a controllable pair. The plant input is given by

\[
u = r + \theta^T \omega
\]

where \(\omega^T = [v_1^T, v_2^T, y]\) and \(\theta(t) = [c^T(t), d^T(t), d_0(t)]^T\) is a \((2n-1)\) dimensional adjustable parameter vector. It has been shown in [1] that a constant vector \(\theta^*\) exists such that for \(\theta(t) = \theta^*\) the transfer function of the parasitic-free plant (2.12) with controller (2.13)-(2.15) matches that of the model (2.11).

If we apply to the plant with parasitics (2.6)-(2.8) the controller described by (2.13)-(2.15) we obtain the following set of equations for the overall feedback system

\[
\begin{bmatrix}
\dot{x} \\
\dot{v}_1 \\
\dot{v}_2
\end{bmatrix} =
\begin{bmatrix}
A_0 & 0 & 0 \\
\Lambda & 0 & v_1 \\
0 & \Lambda & v_2
\end{bmatrix}
\begin{bmatrix}
x \\
v_1 \\
v_2
\end{bmatrix}
+ g
\begin{bmatrix}
0 \\
\theta^T \omega + r \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
A_{12}
\end{bmatrix}
\]

Introducing \(\theta^*\), \(Y^T = [x^T, v_1^T, v_2^T]\) and

\[
\begin{align*}
&\mu \dot{\eta} = A_{22} \eta + \mu (A_1 x + A_2 \theta^T \omega + A_2 r + A_3 \eta) \\
&+ A_4 \theta^T \omega + A_2 \theta^T \omega + A_4 \dot{\theta} \\
y = c_0^T x
\end{align*}
\]
we rewrite (2.16), (2.17) in a form convenient for our stability analysis

\[Y = A_1 Y + b_1 (\theta - \theta^*)^T (\bar{e} + \bar{x}_{mc}) + \bar{A}_{12} \eta \]

\[\mu \dot{\eta} = A_{22} \eta + p \left[\bar{A}_{1} (e + x_{mc}) + A_2 \theta^T (\bar{e} + \bar{x}_{mc}) + A_2 r + A_3 \eta \right. \]

\[\left. + A_4 \theta^T \omega + A_4 \theta^T \omega + A_4 \dot{r} \right] \]

(2.21)

where \(\bar{A}_{12} = [A_{12} \ 0 \ 0]^T \) and \(\bar{A}_i = [A_i \ 0 \ 0]^T \). An advantage of this form is that for \(\theta(t) = \theta^* \) in the parasitic-free case (2.20) becomes a nonminimal representation of the reference model.

The equations for the error \(e = Y - x_{mc} \) can be expressed as

\[\dot{e} = A_e \dot{e} + b_e (\theta - \theta^*)^T (\bar{e} + \bar{x}_{mc}) + \bar{A}_{12} \eta \]

\[\mu \dot{\eta} = A_{22} \eta + p \left[\bar{A}_{1} (e + x_{mc}) + A_2 \theta^T (\bar{e} + \bar{x}_{mc}) \right. \]

\[\left. + A_2 r + A_3 \eta \right] \]

(2.23)

\[e_1 = h \dot{e} - [1 \ 0 \ \ldots \ 0] e \]

(2.25)

where

\[\bar{e} = [v_1^T, v_2^T, y]^T - [v_1^T, v_2^T, y_m]^T, \quad \bar{x}_{mc} = [v_1^T, v_2^T, y_m]^T \]

(2.26)

Theorem 3: Let the reference input \(r(t) \) satisfy

\[|r(t)| < r_1, \quad |\dot{r}(t)| < r_2 \quad \forall t > 0 \]

(2.35)

for some given positive constants \(r_1, r_2 \). Then there exist positive constants \(\mu^*, \sigma, \alpha < 1/2, c_1, c_2, \gamma_1 \) and \(t_1 \) such that for each \(\mu \in (0, \mu^*) \) every solution of (2.31)–(2.34) starting at \(t = 0 \) from the set

\[D(\mu) = \{ e, \eta, \theta; \| e \| + \| \theta \| < c_1 \mu^{-\alpha}, \| \eta \| < c_2 \mu^{-\alpha - 1/2} \} \]

(2.36)

enters the residual set

\[D_0(\mu) = \left\{ e, \eta, \theta; \frac{\gamma_1}{2} \| e \|^2 + \frac{\gamma_2}{2} \| \eta \|^2 + \frac{\sigma}{2} \lambda_1 \| \theta - \theta^* \|^2 \right\} \]

(2.37)

where \(\lambda_1, \lambda_2 \) are positive constants, \(\gamma_1 \) and \(\gamma_2 \) are positive constants, \(\sigma \) and \(\gamma_1 \) are positive constants, \(\theta(t) \) is defined in (2.38), \(t = t_1 \) and remains in the residual set \(D_0(\mu) \) for all \(t > t_1 \). Furthermore,

\[\sigma > c_3 \mu^{2(1-\alpha)} \]

(2.38)

Proof of Theorem 3: Choose the function

\[V(e, \eta, \theta) = e^T P e + (\theta - \theta^*)^T \Gamma^{-1} (\theta - \theta^*) \]

(2.39)

where \(P > 0 \) is a design scalar parameter. The resulting adaptive control system with parasitics is described by

\[\dot{e} = A_e \dot{e} + b_e (\theta - \theta^*)^T (\bar{e} + \bar{x}_{mc}) + \bar{A}_{12} \eta \]

(2.31)

\[\mu \dot{\eta} = A_{22} \eta + p \left[\bar{A}_{1} (e + x_{mc}) + A_2 \theta^T (\bar{e} + \bar{x}_{mc}) \right. \]

\[\left. + A_2 r + A_3 \eta - \sigma A_4 \theta^T (\bar{e} + \bar{x}_{mc}) \right] \]

(2.32)

where \(\bar{A}_{12} = [A_{12} \ 0 \ 0]^T \) and \(\bar{A}_i = [A_i \ 0 \ 0]^T \). An advantage of this form is that for \(\theta(t) = \theta^* \) in the parasitic-free case (2.20) becomes a nonminimal representation of the reference model.

The equations for the error \(e = Y - x_{mc} \) can be expressed as

\[\dot{e} = A_e \dot{e} + b_e (\theta - \theta^*)^T (\bar{e} + \bar{x}_{mc}) + \bar{A}_{12} \eta \]

(2.23)

\[\mu \dot{\eta} = A_{22} \eta + p \left[\bar{A}_{1} (e + x_{mc}) + A_2 \theta^T (\bar{e} + \bar{x}_{mc}) \right. \]

\[\left. + A_2 r + A_3 \eta \right] \]

(2.24)

\[e_1 = h \dot{e} - [1 \ 0 \ \ldots \ 0] e \]

(2.25)

where

\[\bar{e} = [v_1^T, v_2^T, y]^T - [v_1^T, v_2^T, y_m]^T, \quad \bar{x}_{mc} = [v_1^T, v_2^T, y_m]^T \]

(2.26)

The corresponding regulation result follows as a corollary.

Corollary 1: Assume \(r(t) = 0, x_{mc} = 0 \). Then there exists a \(\mu^* \) such that for each \(\mu \in (0, \mu^*) \) every solution of (2.31)–(2.34) starting at \(t = 0 \) from the set

\[D(\mu) = \{ e, \eta, \theta; \| e \| + \| \theta \| < c_1 \mu^{-\alpha}, \| \eta \| < c_2 \mu^{-\alpha - 1/2} \} \]

(2.36)

enters the residual set

\[D_0(\mu) = \left\{ e, \eta, \theta; \frac{\gamma_1}{2} \| e \|^2 + \frac{\gamma_2}{2} \| \eta \|^2 + \frac{\sigma}{2} \lambda_1 \| \theta - \theta^* \|^2 \right\} \]

(2.37)

where \(\gamma_1, \gamma_2, \sigma, \lambda_1, \lambda_2 \) are positive constants, \(\theta(t) \) is defined in (2.38), \(t = t_1 \) and remains in the residual set \(D_0(\mu) \) for all \(t > t_1 \). Furthermore,

\[\sigma > c_3 \mu^{2(1-\alpha)} \]

(2.38)

Proof of Theorem 3: Choose the function

\[V(e, \eta, \theta) = e^T P e + (\theta - \theta^*)^T \Gamma^{-1} (\theta - \theta^*) \]

(2.39)

where \(P > 0 \) is a design scalar parameter. The resulting adaptive control system with parasitics is described by

\[\dot{e} = A_e \dot{e} + b_e (\theta - \theta^*)^T (\bar{e} + \bar{x}_{mc}) + \bar{A}_{12} \eta \]

(2.31)
Equations (2.40), (2.41) follow from the fact that $h^T(sI - A_1)^{-1}b_c$ is strictly positive real [1] and (2.42) follows from the assumption that $\text{Re} \lambda(A_{22}) < 0$.

Observe that for each $\mu > 0$, $p_0 > 0$, and $\alpha > 0$ the equality

$$V(e, \eta, \theta) = p_0 \mu^{-2\alpha}$$

defines a closed surface $S(\mu, \alpha, p_0)$ in \mathbb{R}^{5n+m-3}. The time derivative of $V(e, \eta, \theta)$ along the solution of (2.31)-(2.34) is

$$\dot{V}(e, \eta, \theta) = -\frac{1}{2} e^T(gqT + \epsilon L)e - \sigma(\theta - \theta^\ast)\Gamma^{-1}\theta - \frac{1}{2} \eta^TQ_1\eta + \mu \left[\eta - P_1^{-1} \left(e^T \overline{P}_{12} A_{22}^{-1} \right)^T \right] P_1 \left[\overline{A}_1(e + x_{mc})
ight]$$

$$+ A_2 \theta^T(\bar{e} + \bar{x}_{mc}) + A_3 r + A_3 \eta - \alpha A_4 \theta^T(\bar{e} + \bar{x}_{mc}) - A_4(\bar{e} + \bar{x}_{mc})^T \Gamma(\bar{e} + \bar{x}_{mc}) e$$

$$+ A_5 \theta^T(\theta, e, \eta, r, A_4) + A_5 \eta$$

$$- P_1^{-1} \left(e^T \overline{P}_{12} P \left[A_1 e + B_1(\theta - \theta^\ast)^T(\bar{e} + \bar{x}_{mc}) + \overline{A}_{12} \eta \right] \right).$$

(2.44)

Let

$$\lambda_1 = \frac{c}{2} \min \lambda(L), \quad \lambda_2 = \min \lambda(\Gamma^{-1}),$$

$$\lambda_3 = \frac{1}{2} \min \lambda(Q_i), \quad \lambda_4 = \|\Gamma^{-1}\|. \quad (2.45)$$

Then (2.45) is simplified to

$$\dot{V}(e, \eta, \theta) < -\|e\|^2 \left(\frac{\lambda_1}{4} - \mu(\alpha_1 + \alpha_2\theta^\ast) \right)$$

$$+ \alpha_4 \|e\|^2 + \alpha_4 \|e\| + \alpha_5 \|e\|^2$$

$$- \mu^2 \left(\beta_1 + \beta_2 \|\theta\| + \beta_3 \|e\| + \beta_4 \|e\| + \beta_5 \|\theta^\ast\|^2 \right)$$

$$- \|\eta\|^2 \left(\frac{\lambda_3}{8} - \mu \beta_7 - \mu \beta_9 \|\theta\| \right)$$

$$- \|\theta - \theta^\ast\|^2 \left[\frac{\lambda_2}{4} - \mu^2 \alpha_6 - \mu \alpha_7 \|\theta\|^2 \right]$$

$$- \frac{\lambda_1}{2} \|e\|^2 - \frac{\lambda_3}{2} \|\eta\|^2 - \sigma^2 - \frac{\lambda_2}{2} \|\theta - \theta^\ast\|^2$$

$$+ \frac{\sigma}{\lambda_2} \lambda_2 \|\theta^\ast\|^2 + \mu^2 \gamma_1.$$

(2.46)

where $\alpha_i \rightarrow \alpha_1, \beta_1 \rightarrow \beta_2$ and γ_1 are positive constants determined from r_1, r_2 and the norms of the system and the reference model matrices. Constant γ_1 depends on r_1, r_2 and $\gamma_1 = 0$ when $r_1 = 0, r_2 = 0$. For all e, θ, η enclosed in $S(\mu, \alpha, p_0)$, (2.46) becomes

$$\dot{V}(e, \eta, \theta) < -\|e\|^2 \left(\frac{\lambda_1}{4} - \mu^2 \alpha_6 - \mu \alpha_7 \|\theta\|^2 \right)$$

$$- \|\eta\|^2 \left(\frac{\lambda_3}{8} - \mu \beta_7 - \mu \beta_9 \|\theta\| \right)$$

$$- \|\theta - \theta^\ast\|^2 \left[\frac{\lambda_2}{4} - \mu^2 \alpha_6 - \mu \alpha_7 \|\theta\|^2 \right]$$

$$- \frac{\lambda_1}{2} \|e\|^2 - \frac{\lambda_3}{2} \|\eta\|^2 - \sigma^2 - \frac{\lambda_2}{2} \|\theta - \theta^\ast\|^2$$

$$+ \frac{\sigma}{\lambda_2} \lambda_2 \|\theta^\ast\|^2 + \mu^2 \gamma_1.$$

(2.47)

for some positive constants δ_i, to δ_k which depend on r_1, r_2, and the norms of matrices. For $\alpha < 1/2$ there exists a μ^\ast such that for each $\mu \in (0, \mu^\ast)$

$$\frac{\lambda_1}{4} > \mu^2 \alpha_6 - \mu \alpha_7 \|\theta\|^2$$

and $\lambda_3 \geq \mu \beta_7 + \mu \alpha_7 \|\theta\|^2$.

(2.48)

Choose $\sigma \geq c \mu^{2(1 - \alpha)}$ where $c_1 = (4/\lambda_2) \delta_1$. Then there exist constants c_1, c_2 such that the set $D(p)$ is enclosed by $D(\mu)$, and (2.45) is satisfied by $S(\mu, \alpha, p_0)$. Furthermore, $\dot{V}(e, \eta, \theta) < 0$ everywhere inside $S(\mu, \alpha, p_0)$ except possibly in $D(p)$. The constants c_1, c_2 are chosen such that every solution of (2.31)-(2.34) starting from $D(\mu)$ remains in $S(\mu, \alpha, p_0)$. Since in $D(\mu)/D(p)$, $\dot{V}(e, \eta, \theta)$ is strictly decreasing there exist constants $c_1, c_2 > 1$ and t_1 such that any solution starting at $t = 0$ from $D(\mu)/D(p)$ will enter $D(p)$ at $t = t_1$ and remain in $D(p)$ thereafter. Any solution starting from $D(\mu)$ at $t = 0$ cannot escape and remains in $D(\mu)$ for all $t > 0$.

Proof of Corollary 1: The proof of Corollary 1 follows directly from the proof of Theorem 3 by noting that when $r(t) = 0, x_0 = 0, \sigma = 0$, the set $D(\mu)$ reduces to the origin $e = 0, \theta = 0, \gamma = 0$, i.e. in (2.38) $V = 0$. Therefore, $\dot{V}(e, \eta, \theta) < 0$ everywhere inside $S(\mu, \alpha, p_0)$ and $\dot{V}(e, \eta, \theta) = 0$ at the origin $e = 0, \theta = 0$. Hence, any solution $e(t) - Y(t), \theta(t), \gamma(t)$ starts from $D(\mu)$ is bounded. Furthermore, $\dot{V}(e(t), \gamma(t), \theta(t))$ is uniformly continuous, and therefore $\lim_{t \to +\infty} \dot{V}(e(t), \gamma(t), \theta(t)) = 0$. Hence, $\lim_{t \to +\infty} \|\gamma(t)\| = 0$, $\lim_{t \to +\infty} \|\theta(t)\| = 0$, and $\lim_{t \to +\infty} \|e(t)\| = 0$. Since inside $S(\mu, \alpha, p_0)$, $\dot{V}(e, \eta, \theta)$ is nonincreasing and bounded below, it reaches a limit V_c which is a finite constant. Therefore, $\lim_{t \to +\infty} \|\gamma(t)\| = 0$, $\lim_{t \to +\infty} \|\theta(t)\| = 0$, and $\lim_{t \to +\infty} \|e(t)\| = 0$.

In Theorem 3 and Corollary 1, it is assumed that $\mu^\ast < \mu_1$, where μ_1 is defined in the following lemma.

Lemma 3: There exists a μ_1 such that constant output feedback $u = \theta_0 \omega$ stabilizes (2.16)-(2.18) for all $\mu \in (0, \mu_1)$.

The proof of Lemma 3 is more complicated than that of Lemma 2 and can be found in [17] where an explicit expression has been obtained for μ_1.

Remark 9: The dependence of constants δ_i, to δ_k and γ_1 on r_1, r_2 shows that for a given μ_1 a reference input signal with high magnitude or high frequencies can no longer guarantee that $\dot{V}(e, \eta, \theta) < 0$ everywhere in $D(\mu)/D(p)$. Such a reference signal introduces frequencies in the input control signal which are in the parasitic range. Thus, the control signal is no longer dominated by θ and, hence, it excites the parasitics considerably and leads to instability. This explains the instability phenomena observed by other authors in simulations such as [18] where a square wave was used as a reference input signal.

Remark 10: For ease of exposition we have assumed that $r(t)$ has bounded derivative everywhere on $[0, \infty)$. This assumption can be relaxed by allowing a finite number of jump points or corner points for $r(t)$ on the t-axis without any significant changes on the results of Theorems 2 and 3.

Similar comments as in Remark 8 apply here also.

CONCLUSION

We have analyzed reduced-order adaptive control schemes in which reference models can match the dominant part of the plant, while the model–plant mismatch is caused by the neglected high frequency parasitic modes. In presence of parasitics the global stability properties of the parasitic-free schemes can be lost. We have shown that in the regulation problem a region of attraction exists for exact adaptive regulation. This region is a function of the adaptive gains and the speed ratio μ, and as $\mu \to \infty$, it becomes the whole space. Thus the adaptive regulation problem is well posed with respect to parasitics. In the case of tracking we proposed a modified adaptive law. The modified scheme guarantees the existence of a region of attrac-
tion from which all signals converge to a residual set which contains the equilibrium for exact tracking. The dependence of the size of this set on design parameters indicates that a tradeoff can be made sacrificing some of the ideal parasitic-free properties, in order to achieve robustness in presence of parasitics. The crucial effects of the frequency range of parasitics, the adaptive gains, and the reference input signal characteristics on the stability properties of adaptive control schemes explain the undesirable phenomena observed in [12], [13]. The results of this paper are obtained for a continuous-time SISO adaptive control scheme where the transfer function of the dominant part of the plant has a relative degree of one. The same methodology can be extended to more complicated continuous and discrete-time adaptive control problems.

REFERENCES

Petros A. Ioannou was born in Cyprus, on February 3, 1953. He received the B.Sc. degree with First Class Honors from University College, London, England, in 1978 and the M.S. and Ph.D. degrees from the University of Illinois, Urbana, in 1980 and 1983, respectively.

In the summer of 1979 he worked with the Ford Motor Company on the control problem of the car engine. From 1979 to 1982 he was a Research Assistant at the Coordinated Science Laboratory, University of Illinois. During his graduate studies, he also worked on research projects from the Ford Motor Company, General Electric, and Dynamic Systems. In 1982 he joined the Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, as an Assistant Professor. He currently teaches and conducts research in the areas of adaptive systems, large scale systems, and singular perturbations.

Dr. Ioannou is a member of the American Society of Mechanical Engineers,Eta Kappa Nu, and Tau Beta Pi. He has held a Commonwealth Scholarship from The Association of Commonwealth Universities, London, England, and was awarded the Goldsmid Prize and the A.P. Head Prize from University College.

Peter V. Kokotovic (SM’74–F’80) received graduate degrees in 1962 under Prof. Mitrovic in Belgrade, Yugoslavia, and in 1965 under Prof. Feldbaum and Prof. Tsypkin in Moscow, USSR.

He has been active in control theory and its applications for more than 20 years. From 1959 to 1966 he was with the Pupin Research Institute, Belgrade, Yugoslavia. Since 1966 he has been with the Department of Electrical Engineering and the Coordinated Science Laboratory, University of Illinois, Urbana, where he teaches control theory and conducts research in modeling, sensitivity analysis, optimal and adaptive control, singular perturbations, and large scale systems. He has held visiting appointments with ETH, Zurich, Switzerland, INRIA, France, and has lectured at other institutions in the U.S. and Europe. His consulting activities include General Electric Company and Ford Motor Company.

Prof. Kokotovic has served on the IDC and AdCom of the IEEE Control Systems Society and on committees of the International Federation of Automatic Control. He is an Associate Editor of Systems and Control Letters.