Estimating Android Applications’ CPU Energy Usage via Bytecode Profiling

Shuai Hao, Ding Li, William G.J. Halfond, and Ramesh Govindan
The Message

• Goal: Optimize energy efficiency of implementation
• Important to focus on software implementation
• Current techniques inadequately support developers in optimization
The Issues

- Power monitors
- Many diverse components
- Static imprecision
- Level of granularity
- Speed of feedback
- Combinations of hardware/OS
- Extensive use of system libraries
eCalc

![Diagram of eCalc process]

Diagram Description:

- **Software Artifact**
- **Test Cases**
- **CPU Profile**

Flow:

1. **Execution Trace Generator** → **Analyzer**
2. **$C()$**
3. **Energy Estimate E_s E_M**

Graph:

- **Y-axis:** Energy (Joule)
- **X-axis:** qsort, md5, matrix, imgrot, md5api
- **Legend:** Ground Truth, eCalc, Averaged bytecode cost, No path sensitivity

The Questions

1. What information does an app developer need to make informed energy optimizations?

2. What is the best way to prove the usefulness of such approaches?