Optimal and Adaptive Algorithms for Online Boosting

Alina Beygelzimer1 \quad Satyen Kale1 \quad Haipeng Luo2

1Yahoo! Labs, NYC
2Computer Science Department, Princeton University

Jul 8, 2015
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

- Given: a set of training examples.
 - (“Wanna make fast money? ...”, spam)
 - (“How is research going? –Rob”, not spam)
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

- Given: a set of training examples.
 - (“Wanna make fast money? ...”, spam)
 - (“How is research going? –Rob”, not spam)

- Obtain a classifier by asking a “weak learning algorithm”:
 - e.g. contains the word “money” ⇒ spam.
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

- Given: a set of training examples.
 - (“Wanna make fast money? …”, spam)
 - (“How is research going? –Rob”, not spam)

- Obtain a classifier by asking a “weak learning algorithm”:
 - e.g. contains the word “money” ⇒ spam.

- Reweight the examples so that “difficult” ones get more attention.
 - e.g. spam that doesn’t contain “money”.
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

- Given: a set of training examples.
 - (“Wanna make fast money? ...”, spam)
 - (“How is research going? –Rob”, not spam)

- Obtain a classifier by asking a “weak learning algorithm”:
 - e.g. contains the word “money” ⇒ spam.

- Reweight the examples so that “difficult” ones get more attention.
 - e.g. spam that doesn’t contain “money”.

- Obtain another classifier:
 - e.g. empty “to address” ⇒ spam.
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

- Given: a set of training examples.
 - (“Wanna make fast money? ...”, spam)
 - (“How is research going? –Rob”, not spam)

- Obtain a classifier by asking a “weak learning algorithm”:
 - e.g. contains the word “money” ⇒ spam.

- Reweight the examples so that “difficult” ones get more attention.
 - e.g. spam that doesn’t contain “money”.

- Obtain another classifier:
 - e.g. empty “to address” ⇒ spam.

-
Boosting: An Example

Idea: combine weak “rules of thumb” to form a highly accurate predictor.

Example: email spam detection.

- Given: a set of training examples.
 - (“Wanna make fast money? ...”, spam)
 - (“How is research going? –Rob”, not spam)

- Obtain a classifier by asking a “weak learning algorithm”:
 - e.g. contains the word “money” ⇒ spam.

- Reweight the examples so that “difficult” ones get more attention.
 - e.g. spam that doesn’t contain “money”.

- Obtain another classifier:
 - e.g. empty “to address” ⇒ spam.

-

- At the end, predict by taking a (weighted) majority vote.
Online Boosting: Motivation

Boosting is well studied in the **batch setting**, but become **infeasible** when the amount of data is huge.
Online Boosting: Motivation

Boosting is well studied in the batch setting, but become infeasible when the amount of data is huge.

Online learning has proven extremely useful:

- one pass of the data, make prediction on the fly.
Online Boosting: Motivation

Boosting is well studied in the batch setting, but become infeasible when the amount of data is huge.

Online learning has proven extremely useful:

- one pass of the data, make prediction on the fly.
- works even in an adversarial environment.
 - e.g. spam detection.
Online Boosting: Motivation

Boosting is well studied in the batch setting, but become infeasible when the amount of data is huge.

Online learning has proven extremely useful:

- one pass of the data, make prediction on the fly.
- works even in an adversarial environment.
 - e.g. spam detection.

An natural question: how to extend boosting to the online setting?
Related Work

Several algorithms exist (Oza and Russell, 2001; Grabner and Bischof, 2006; Liu and Yu, 2007; Grabner et al., 2008).

- mimic offline counterparts.
- achieve great success in many real-world applications.
- no theoretical guarantees.
Related Work

Several algorithms exist (Oza and Russell, 2001; Grabner and Bischof, 2006; Liu and Yu, 2007; Grabner et al., 2008).

- mimic offline counterparts.
- achieve great success in many real-world applications.
- no theoretical guarantees.

Chen et al. (2012): first online boosting algorithms with theoretical guarantees.

- online analogue of weak learning assumption.
- connecting online boosting and smooth batch boosting.
Batch Boosting

Given a batch of T examples, $(x_t, y_t) \in \mathcal{X} \times \{-1, 1\}$ for $t = 1, \ldots, T$. Learner A predicts $A(x_t) \in \{-1, 1\}$ for example x_t.

Weak learner A (with edge γ):

$$
\sum_{t=1}^{T} 1_{\{A(x_t) \neq y_t\}} \leq \left(\frac{1}{2} - \gamma\right) T + S
$$

Strong learner A' (with any target error rate ϵ):

$$
\sum_{t=1}^{T} 1_{\{A'(x_t) \neq y_t\}} \leq \epsilon T + S'
$$

this talk: $S = \frac{1}{\gamma}$ (corresponds to \sqrt{T} regret)
Batch Boosting

Given a batch of T examples, $(x_t, y_t) \in \mathcal{X} \times \{-1, 1\}$ for $t = 1, \ldots, T$. Learner \mathcal{A} predicts $\mathcal{A}(x_t) \in \{-1, 1\}$ for example x_t.

Weak learner \mathcal{A} (with edge γ):

$$\sum_{t=1}^{T} \mathbf{1}\{\mathcal{A}(x_t) \neq y_t\} \leq \left(\frac{1}{2} - \gamma\right)T$$
Batch Boosting

Given a batch of T examples, $(x_t, y_t) \in \mathcal{X} \times \{-1, 1\}$ for $t = 1, \ldots, T$. Learner A predicts $A(x_t) \in \{-1, 1\}$ for example x_t.

Weak learner A (with edge γ):

$$\sum_{t=1}^{T} 1\{A(x_t) \neq y_t\} \leq (\frac{1}{2} - \gamma) T$$

Strong learner A' (with any target error rate ϵ):

$$\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \epsilon T$$
Batch Boosting

Given a batch of T examples, $(x_t, y_t) \in \mathcal{X} \times \{-1, 1\}$ for $t = 1, \ldots, T$. Learner \mathcal{A} predicts $\mathcal{A}(x_t) \in \{-1, 1\}$ for example x_t.

Weak learner \mathcal{A} (with edge γ):

$$\sum_{t=1}^{T} 1\{\mathcal{A}(x_t) \neq y_t\} \leq \left(\frac{1}{2} - \gamma\right) T$$

⇔ Boosting (Schapire, 1990; Freund, 1995)

Strong learner \mathcal{A}' (with any target error rate ϵ):

$$\sum_{t=1}^{T} 1\{\mathcal{A}'(x_t) \neq y_t\} \leq \epsilon T$$
Online Boosting

Examples $(x_t, y_t) \in X \times \{-1, 1\}$ arrive online, for $t = 1, \ldots, T$.
Learner A observes x_t and predicts $A(x_t) \in \{-1, 1\}$ before seeing y_t.

Weak Online learner A (with edge γ):

$$\sum_{t=1}^{T} 1\{A(x_t) \neq y_t\} \leq (\frac{1}{2} - \gamma) T$$

Strong Online learner A' (with any target error rate ϵ):

$$\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \epsilon T$$
Online Boosting

Examples \((x_t, y_t) \in X \times \{-1, 1\}\) arrive online, for \(t = 1, \ldots, T\). Learner \(A\) observes \(x_t\) and predicts \(A(x_t) \in \{-1, 1\}\) before seeing \(y_t\).

Weak Online learner \(A\) (with edge \(\gamma\) and excess loss \(S\)):

\[
\sum_{t=1}^{T} 1\{A(x_t) \neq y_t\} \leq (\frac{1}{2} - \gamma) T + S
\]

Strong Online learner \(A'\) (with any target error rate \(\epsilon\) and excess loss \(S'\))

\[
\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \epsilon T + S'
\]
Online Boosting

Examples \((x_t, y_t) \in X \times \{-1, 1\}\) arrive online, for \(t = 1, \ldots, T\). Learner \(A\) observes \(x_t\) and predicts \(A(x_t) \in \{-1, 1\}\) before seeing \(y_t\).

Weak Online learner \(A\) (with edge \(\gamma\) and excess loss \(S\)):

\[
\sum_{t=1}^{T} 1\{A(x_t) \neq y_t\} \leq (\frac{1}{2} - \gamma) T + S
\]

\(\Downarrow\) Online Boosting (our result)

Strong Online learner \(A'\) (with any target error rate \(\epsilon\) and excess loss \(S'\))

\[
\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \epsilon T + S'
\]
Online Boosting

Examples \((x_t, y_t) \in X \times \{-1, 1\}\) arrive online, for \(t = 1, \ldots, T\).
Learner \(A\) observes \(x_t\) and predicts \(A(x_t) \in \{-1, 1\}\) before seeing \(y_t\).

Weak Online learner \(A\) (with edge \(\gamma\) and excess loss \(S\)):

\[
\sum_{t=1}^{T} 1\{A(x_t) \neq y_t\} \leq (\frac{1}{2} - \gamma) T + S
\]

\(\Downarrow\) Online Boosting (our result)

Strong Online learner \(A'\) (with any target error rate \(\epsilon\) and excess loss \(S'\))

\[
\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \epsilon T + S'
\]

this talk: \(S = \frac{1}{\gamma}\) (corresponds to \(\sqrt{T}\) regret)
Main Results

Parameters of interest:

\(N = \) number of weak learners (of edge \(\gamma \)) needed to achieve error rate \(\epsilon \).

\(T_\epsilon = \) minimal number of examples s.t. error rate is \(\epsilon \).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(N)</th>
<th>(T_\epsilon)</th>
<th>Optimal?</th>
<th>Adaptive?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online BBM</td>
<td>(O(\frac{1}{\gamma^2 \ln \frac{1}{\epsilon}}))</td>
<td>(\tilde{O}(\frac{1}{\epsilon \gamma^2}))</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>AdaBoost.OL</td>
<td>(O(\frac{1}{\epsilon \gamma^2}))</td>
<td>(\tilde{O}(\frac{1}{\epsilon^2 \gamma^4}))</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Chen et al. (2012)</td>
<td>(O(\frac{1}{\epsilon \gamma^2}))</td>
<td>(\tilde{O}(\frac{1}{\epsilon \gamma^2}))</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Structure of Online Boosting

\[x_1 \]

\[\text{Booster} \]
Structure of Online Boosting

$$WL_1^1 \text{ predict}$$

$$WL_2^2 \text{ predict}$$

...

$$WL_N^N \text{ predict}$$

$$WL_1^1 \text{ update w.p. } \frac{1}{p_1} (x_1, y_1)$$

$$WL_2^2 \text{ update w.p. } \frac{1}{p_2} (x_1, y_1)$$

...

$$WL_N^N \text{ update w.p. } \frac{1}{p_N} (x_1, y_1)$$
Structure of Online Boosting

\[WL_1 \] predict

\[WL_2 \] predict

...

\[WL_N \] predict

\[x_1 \] \[\hat{y}_1 \] \[y_1 \]

\[x_1 \] \[\hat{y}_1 \]

\[x_1 \] \[\hat{y}_1 \]
Structure of Online Boosting

\[\begin{align*}
&W L^1 \\
&\text{predict} \\
&x_1 \quad \hat{y}_1 \\
&y_1 \quad x_1 \\
&W L^2 \\
&\text{predict} \\
&x_1 \quad \hat{y}_2 \\
&\hat{y}_1 \quad x_1 \\
&\ldots \\
&W L^N \\
&\text{predict} \\
&x_1 \quad \hat{y}_N \\
&\hat{y}_1 \quad x_1 \\
&W L^1 \\
&\text{update} \\
&w.p. \ p_1^1 \ (x_1, y_1) \\
&W L^2 \\
&\text{update} \\
&w.p. \ p_1^2 \ (x_1, y_1) \\
&\ldots \\
&W L^N \\
&\text{update} \\
&w.p. \ p_1^N \ (x_1, y_1) \\
\end{align*} \]
Structure of Online Boosting

\[WL_1 \]\n\[WL_2 \]\n\[\cdots \]\n\[WL_N \]

\[x_2 \quad \hat{y}_2 \quad y_2 \]

\[\text{predict} \quad \text{predict} \quad \text{predict} \]

\[w.p. \quad p_1 \quad (x_2, y_2) \quad w.p. \quad p_2 \quad (x_2, y_2) \quad w.p. \quad p_N \quad (x_2, y_2) \]
Structure of Online Boosting

\[
\begin{align*}
WL^1 & \quad \text{predict} & x_t \quad \hat{y}_t^1 \quad y_t \\
WL^2 & \quad \text{predict} & x_t \quad \hat{y}_t^2 \\
\vdots & \quad \vdots \\
WL^N & \quad \text{predict} & x_t \quad \hat{y}_t^N \\
\end{align*}
\]

\[
\begin{align*}
WL^1 & \quad \text{update} & w.p. p_t^1 (x_t, y_t) \\
WL^2 & \quad \text{update} & w.p. p_t^2 (x_t, y_t) \\
\vdots & \quad \vdots \\
WL^N & \quad \text{update} & w.p. p_t^N (x_t, y_t) \\
\end{align*}
\]
Batch boosting can be analyzed using drifting game.

Online version: sequence of potentials $\Phi_i(s)$ s.t.

\[
\Phi_N(s) \geq 1 \{s \leq 0\}, \quad \Phi_i - 1(s) \geq (1/2 - \gamma^2)\Phi_i(s - 1) + (1/2 + \gamma^2)\Phi_i(s + 1).
\]

Online boosting algorithm using Φ_i:

- prediction: majority vote.
- update: $p_i^t \propto w_{i^t}$ where $w_{i^t} = \text{difference in potentials if example is misclassified or not.}$
Batch boosting can be analyzed using drifting game.

Online version: sequence of potentials $\Phi_i(s)$ s.t.

\[
\begin{align*}
\Phi_N(s) &\geq 1\{s \leq 0\}, \\
\Phi_{i-1}(s) &\geq (\frac{1}{2} - \frac{\gamma}{2})\Phi_i(s - 1) + (\frac{1}{2} + \frac{\gamma}{2})\Phi_i(s + 1).
\end{align*}
\]
Batch boosting can be analyzed using drifting game.

Online version: sequence of potentials $\Phi_i(s)$ s.t.

\[
\begin{align*}
\Phi_N(s) & \geq 1\{s \leq 0\}, \\
\Phi_{i-1}(s) & \geq \left(\frac{1}{2} - \frac{\gamma}{2}\right)\Phi_i(s - 1) + \left(\frac{1}{2} + \frac{\gamma}{2}\right)\Phi_i(s + 1).
\end{align*}
\]

Online boosting algorithm using Φ_i:

- **prediction:** majority vote.
Batch boosting can be analyzed using drifting game.

Online version: sequence of potentials $\Phi_i(s)$ s.t.

\[
\Phi_N(s) \geq 1\{s \leq 0\}, \\
\Phi_{i-1}(s) \geq \left(\frac{1}{2} - \frac{\gamma}{2}\right)\Phi_i(s - 1) + \left(\frac{1}{2} + \frac{\gamma}{2}\right)\Phi_i(s + 1).
\]

Online boosting algorithm using Φ_i:

- **prediction:** majority vote.
- **update:** $p_t^i = \Pr[(x_t, y_t) \text{ sent to } i\text{th weak learner}] \propto w_t^i$ where $w_t^i = \text{difference in potentials if example is misclassified or not.}$
Mistake Bound

Generalized drifting games analysis implies

\[\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \Phi_0(0) T + (S + \frac{1}{\gamma}) \sum_i \|w^i\|_\infty \leq \epsilon. \]
Mistake Bound

Generalized drifting games analysis implies

\[\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \Phi_0(0) T + (S + \frac{1}{\gamma}) \sum_{i} \|w_i\|_{\infty} \leq \epsilon \]

So we want small \(\|w^i\|_{\infty}\).

- exponential potential (corresponding to AdaBoost) does not work.
Mistake Bound

Generalized drifting games analysis implies

\[\sum_{t=1}^{T} \mathbf{1}\{A'(x_t) \neq y_t\} \leq \Phi_0(0) T + (S + \frac{1}{\gamma}) \sum_i \|w^i\|_\infty. \]

So we want small \(\|w^i\|_\infty \).

- exponential potential (corresponding to AdaBoost) does not work.
- Boost-by-Majority (Freund, 1995) potential works well!
Mistake Bound

Generalized drifting games analysis implies

\[\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \Phi_0(0) T + (S + \frac{1}{\gamma}) \sum_{i} \|w^i\|_\infty. \]

So we want small \(\|w^i\|_\infty \).

- exponential potential (corresponding to AdaBoost) does not work.
- Boost-by-Majority (Freund, 1995) potential works well!
 - \(w^i_t = \Pr[k^i_t \text{ heads in } N - i \text{ flips of a } \frac{\gamma}{2}-\text{biased coin}] \)
Mistake Bound

Generalized drifting games analysis implies

$$\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \Phi_0(0) T + \underbrace{(S + \frac{1}{\gamma}) \sum_i \|w^i\|_{\infty}}_{=S'} \leq \epsilon.$$

So we want small $\|w^i\|_{\infty}$.

- exponential potential (corresponding to AdaBoost) does not work.
- **Boost-by-Majority** (Freund, 1995) potential works well!
 - $w^i_t = \Pr[k^i_t \text{ heads in } N - i \text{ flips of a } \gamma/2\text{-biased coin}] \leq \frac{4}{\sqrt{N-i}}$
Mistake Bound

Generalized drifting games analysis implies

$$\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \Phi_0(0) \cdot T + (S + \frac{1}{\gamma}) \sum_i \|w^i\|_{\infty}.$$

So we want small $\|w^i\|_{\infty}$.

- Exponential potential (corresponding to AdaBoost) does not work.
- Boost-by-Majority (Freund, 1995) potential works well!
 - $w^i_t = \Pr[k^i_t \text{ heads in } N - i \text{ flips of a } \frac{\gamma}{2}-\text{biased coin}] \leq \frac{4}{\sqrt{N-i}}$

Online BBM: to get ϵ error rate, needs

$N = O(\frac{1}{\gamma^2 \ln(\frac{1}{\epsilon})})$ weak learners and $T_\epsilon = O(\frac{1}{\epsilon \gamma^2})$ examples. (Optimal)
Drawback of Online BBM

The draw back of BBM (or Chen et al. (2012)) is the lack of adaptivity.

- requires γ as a parameter.
Drawback of Online BBM

The draw back of BBM (or Chen et al. (2012)) is the lack of adaptivity.

- requires γ as a parameter.
- treats each weak learner equally: predicts via simple majority vote.
The drawback of BBM (or Chen et al. (2012)) is the lack of adaptivity.

- requires γ as a parameter.
- treats each weak learner equally: predicts via simple majority vote.

Adaptivity is the key advantage of AdaBoost!

- different weak learners weighted differently based on their performance.
Adaptivity via Online Loss Minimization

Batch boosting finds a combination of weak learners to minimize some loss function using coordinate descent. (Breiman, 1999)
Adaptivity via Online Loss Minimization

Batch boosting finds a combination of weak learners to minimize some loss function using coordinate descent. (Breiman, 1999)

- AdaBoost: exponential loss
- AdaBoost.L: logistic loss
Adaptivity via Online Loss Minimization

Batch boosting finds a combination of weak learners to minimize some loss function using coordinate descent. (Breiman, 1999)

- **AdaBoost**: exponential loss
- **AdaBoost.L**: logistic loss

We generalize it to the online setting:
- replace line search with online gradient descent.
Adaptivity via Online Loss Minimization

Batch boosting finds a combination of weak learners to minimize some loss function using coordinate descent. (Breiman, 1999)

- AdaBoost: exponential loss
- AdaBoost.L: logistic loss

We generalize it to the online setting:

- replace line search with online gradient descent.
- exponential loss does not work again, use logistic loss to get adaptive online boosting algorithm AdaBoost.OL.
Mistake Bound

If WL has edge γ_i, then

$$\sum_{t=1}^{T} \mathbf{1}\{\mathcal{A'}(x_t) \neq y_t\} \leq \frac{2T}{\sum_i \gamma_i^2} + \tilde{O}\left(\frac{N^2}{\sum_i \gamma_i^2}\right)$$
Mistake Bound

If WL^i has edge γ_i, then

$$\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \frac{2T}{\sum_i \gamma_i^2} + \tilde{O}\left(\frac{N^2}{\sum_i \gamma_i^2}\right)$$

Suppose $\gamma_i \geq \gamma$, then to get ϵ error rate AdaBoost.OL needs $N = O\left(\frac{1}{\epsilon^2 \gamma^2}\right)$ weak learners and $T_\epsilon = O\left(\frac{1}{\epsilon^2 \gamma^4}\right)$ examples.
Mistake Bound

If \(\text{WL}^i \) has edge \(\gamma_i \), then

\[
\sum_{t=1}^{T} 1\{A'(x_t) \neq y_t\} \leq \frac{2T}{\sum_i \gamma_i^2} + \tilde{O}\left(\frac{N^2}{\sum_i \gamma_i^2}\right)
\]

Suppose \(\gamma_i \geq \gamma \), then to get \(\epsilon \) error rate AdaBoost.OL needs

\(N = O\left(\frac{1}{\epsilon \gamma^2}\right) \) weak learners and \(T_\epsilon = O\left(\frac{1}{\epsilon^2 \gamma^4}\right) \) examples.

Not optimal but adaptive.
Results

Available in Vowpal Wabbit 8.0.

- command line option: **--boosting**.
- VW as the default “weak” learner (a rather strong one!)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>VW baseline</th>
<th>Online BBM</th>
<th>AdaBoost.OL</th>
<th>Chen et al. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>20news</td>
<td>0.0812</td>
<td>0.0775</td>
<td>0.0777</td>
<td>0.0791</td>
</tr>
<tr>
<td>a9a</td>
<td>0.1509</td>
<td>0.1495</td>
<td>0.1497</td>
<td>0.1509</td>
</tr>
<tr>
<td>activity</td>
<td>0.0133</td>
<td>0.0114</td>
<td>0.0128</td>
<td>0.0130</td>
</tr>
<tr>
<td>adult</td>
<td>0.1543</td>
<td>0.1526</td>
<td>0.1536</td>
<td>0.1539</td>
</tr>
<tr>
<td>bio</td>
<td>0.0035</td>
<td>0.0031</td>
<td>0.0032</td>
<td>0.0033</td>
</tr>
<tr>
<td>census</td>
<td>0.0471</td>
<td>0.0469</td>
<td>0.0469</td>
<td>0.0469</td>
</tr>
<tr>
<td>covtype</td>
<td>0.2563</td>
<td>0.2347</td>
<td>0.2495</td>
<td>0.2470</td>
</tr>
<tr>
<td>letter</td>
<td>0.2295</td>
<td>0.1923</td>
<td>0.2078</td>
<td>0.2148</td>
</tr>
<tr>
<td>maptaskcoref</td>
<td>0.1091</td>
<td>0.1077</td>
<td>0.1083</td>
<td>0.1093</td>
</tr>
<tr>
<td>nomao</td>
<td>0.0641</td>
<td>0.0627</td>
<td>0.0635</td>
<td>0.0627</td>
</tr>
<tr>
<td>poker</td>
<td>0.4555</td>
<td>0.4312</td>
<td>0.4555</td>
<td>0.4555</td>
</tr>
<tr>
<td>rcv1</td>
<td>0.0487</td>
<td>0.0485</td>
<td>0.0484</td>
<td>0.0488</td>
</tr>
<tr>
<td>vehv2binary</td>
<td>0.0292</td>
<td>0.0286</td>
<td>0.0291</td>
<td>0.0284</td>
</tr>
</tbody>
</table>
Conclusions

We propose

- A natural framework of online boosting.
- An optimal algorithm Online BBM.
- An adaptive algorithm AdaBoost.OL.
Conclusions

We propose

- A natural framework of online boosting.
- An optimal algorithm Online BBM.
- An adaptive algorithm AdaBoost.OL.

Future directions:

- Open problem: optimal and adaptive algorithm?
- Beyond classification: online gradient boosting for regression (see arXiv: 1506.04820).