

9.7 Exercises 369

Obs. X1 X2 Y

1 3 4 Red
2 2 2 Red
3 4 4 Red
4 1 4 Red
5 2 1 Blue
6 4 3 Blue
7 4 1 Blue

Sketch the observations.

(b) Sketch the optimal separating hyperplane, and provide the equa-
tion for this hyperplane (of the form (9.1)).

(c) Describe the classification rule for the maximal margin classifier.
It should be something along the lines of “Classify to Red if
β0 + β1X1 + β2X2 > 0, and classify to Blue otherwise.” Provide
the values for β0, β1, and β2.

(d) On your sketch, indicate the margin for the maximal margin
hyperplane.

(e) Indicate the support vectors for the maximal margin classifier.

(f) Argue that a slight movement of the seventh observation would
not affect the maximal margin hyperplane.

(g) Sketch a hyperplane that is not the optimal separating hyper-
plane, and provide the equation for this hyperplane.

(h) Draw an additional observation on the plot so that the two
classes are no longer separable by a hyperplane.

Applied

4. Generate a simulated two-class data set with 100 observations and
two features in which there is a visible but non-linear separation be-
tween the two classes. Show that in this setting, a support vector
machine with a polynomial kernel (with degree greater than 1) or a
radial kernel will outperform a support vector classifier on the train-
ing data. Which technique performs best on the test data? Make
plots and report training and test error rates in order to back up
your assertions.

5. We have seen that we can fit an SVM with a non-linear kernel in order
to perform classification using a non-linear decision boundary. We will
now see that we can also obtain a non-linear decision boundary by
performing logistic regression using non-linear transformations of the
features.

370 9. Support Vector Machines

(a) Generate a data set with n = 500 and p = 2, such that the obser-
vations belong to two classes with a quadratic decision boundary
between them. For instance, you can do this as follows:

> x1=runif (500) -0.5

> x2=runif (500) -0.5

> y=1*(x1^2-x2^2 > 0)

(b) Plot the observations, colored according to their class labels.
Your plot should display X1 on the x-axis, and X2 on the y-
axis.

(c) Fit a logistic regression model to the data, using X1 and X2 as
predictors.

(d) Apply this model to the training data in order to obtain a pre-
dicted class label for each training observation. Plot the ob-
servations, colored according to the predicted class labels. The
decision boundary should be linear.

(e) Now fit a logistic regression model to the data using non-linear
functions of X1 and X2 as predictors (e.g. X

2
1 , X1×X2, log(X2),

and so forth).

(f) Apply this model to the training data in order to obtain a pre-
dicted class label for each training observation. Plot the ob-
servations, colored according to the predicted class labels. The
decision boundary should be obviously non-linear. If it is not,
then repeat (a)-(e) until you come up with an example in which
the predicted class labels are obviously non-linear.

(g) Fit a support vector classifier to the data with X1 and X2 as
predictors. Obtain a class prediction for each training observa-
tion. Plot the observations, colored according to the predicted
class labels.

(h) Fit a SVM using a non-linear kernel to the data. Obtain a class
prediction for each training observation. Plot the observations,
colored according to the predicted class labels.

(i) Comment on your results.

6. At the end of Section 9.6.1, it is claimed that in the case of data that
is just barely linearly separable, a support vector classifier with a
small value of cost that misclassifies a couple of training observations
may perform better on test data than one with a huge value of cost
that does not misclassify any training observations. You will now
investigate this claim.

(a) Generate two-class data with p = 2 in such a way that the classes
are just barely linearly separable.

9.7 Exercises 371

(b) Compute the cross-validation error rates for support vector
classifiers with a range of cost values. How many training er-
rors are misclassified for each value of cost considered, and how
does this relate to the cross-validation errors obtained?

(c) Generate an appropriate test data set, and compute the test
errors corresponding to each of the values of cost considered.
Which value of cost leads to the fewest test errors, and how
does this compare to the values of cost that yield the fewest
training errors and the fewest cross-validation errors?

(d) Discuss your results.

7. In this problem, you will use support vector approaches in order to
predict whether a given car gets high or low gas mileage based on the
Auto data set.

(a) Create a binary variable that takes on a 1 for cars with gas
mileage above the median, and a 0 for cars with gas mileage
below the median.

(b) Fit a support vector classifier to the data with various values
of cost, in order to predict whether a car gets high or low gas
mileage. Report the cross-validation errors associated with dif-
ferent values of this parameter. Comment on your results.

(c) Now repeat (b), this time using SVMs with radial and polyno-
mial basis kernels, with different values of gamma and degree and
cost. Comment on your results.

(d) Make some plots to back up your assertions in (b) and (c).

Hint: In the lab, we used the plot() function for svm objects
only in cases with p = 2. When p > 2, you can use the plot()

function to create plots displaying pairs of variables at a time.
Essentially, instead of typing

> plot(svmfit , dat)

where svmfit contains your fitted model and dat is a data frame
containing your data, you can type

> plot(svmfit , dat , x1∼x4)

in order to plot just the first and fourth variables. However, you
must replace x1 and x4 with the correct variable names. To find
out more, type ?plot.svm.

8. This problem involves the OJ data set which is part of the ISLR

package.

372 9. Support Vector Machines

(a) Create a training set containing a random sample of 800
observations, and a test set containing the remaining
observations.

(b) Fit a support vector classifier to the training data using
cost=0.01, with Purchase as the response and the other variables
as predictors. Use the summary() function to produce summary
statistics, and describe the results obtained.

(c) What are the training and test error rates?

(d) Use the tune() function to select an optimal cost. Consider val-
ues in the range 0.01 to 10.

(e) Compute the training and test error rates using this new value
for cost.

(f) Repeat parts (b) through (e) using a support vector machine
with a radial kernel. Use the default value for gamma.

(g) Repeat parts (b) through (e) using a support vector machine
with a polynomial kernel. Set degree=2.

(h) Overall, which approach seems to give the best results on this
data?

10
Unsupervised Learning

Most of this book concerns supervised learning methods such as
regression and classification. In the supervised learning setting, we typically
have access to a set of p features X1, X2, . . . , Xp, measured on n obser-
vations, and a response Y also measured on those same n observations.
The goal is then to predict Y using X1, X2, . . . , Xp.
This chapter will instead focus on unsupervised learning, a set of sta-

tistical tools intended for the setting in which we have only a set of fea-
tures X1, X2, . . . , Xp measured on n observations. We are not interested
in prediction, because we do not have an associated response variable Y .
Rather, the goal is to discover interesting things about the measurements
on X1, X2, . . . , Xp. Is there an informative way to visualize the data? Can
we discover subgroups among the variables or among the observations?
Unsupervised learning refers to a diverse set of techniques for answering
questions such as these. In this chapter, we will focus on two particu-
lar types of unsupervised learning: principal components analysis, a tool
used for data visualization or data pre-processing before supervised tech-
niques are applied, and clustering, a broad class of methods for discovering
unknown subgroups in data.

10.1 The Challenge of Unsupervised Learning

Supervised learning is a well-understood area. In fact, if you have read
the preceding chapters in this book, then you should by now have a good

G. James et al., An Introduction to Statistical Learning: with Applications in R,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7 10,
© Springer Science+Business Media New York 2013

373

374 10. Unsupervised Learning

grasp of supervised learning. For instance, if you are asked to predict a
binary outcome from a data set, you have a very well developed set of tools
at your disposal (such as logistic regression, linear discriminant analysis,
classification trees, support vector machines, and more) as well as a clear
understanding of how to assess the quality of the results obtained (using
cross-validation, validation on an independent test set, and so forth).
In contrast, unsupervised learning is often much more challenging. The

exercise tends to be more subjective, and there is no simple goal for the
analysis, such as prediction of a response. Unsupervised learning is often
performed as part of an exploratory data analysis. Furthermore, it can be

exploratory
data analysishard to assess the results obtained from unsupervised learning methods,

since there is no universally accepted mechanism for performing cross-
validation or validating results on an independent data set. The reason
for this difference is simple. If we fit a predictive model using a supervised
learning technique, then it is possible to check our work by seeing how
well our model predicts the response Y on observations not used in fitting
the model. However, in unsupervised learning, there is no way to check our
work because we don’t know the true answer—the problem is unsupervised.
Techniques for unsupervised learning are of growing importance in a

number of fields. A cancer researcher might assay gene expression levels in
100 patients with breast cancer. He or she might then look for subgroups
among the breast cancer samples, or among the genes, in order to obtain
a better understanding of the disease. An online shopping site might try
to identify groups of shoppers with similar browsing and purchase histo-
ries, as well as items that are of particular interest to the shoppers within
each group. Then an individual shopper can be preferentially shown the
items in which he or she is particularly likely to be interested, based on
the purchase histories of similar shoppers. A search engine might choose
what search results to display to a particular individual based on the click
histories of other individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via unsupervised learning
techniques.

10.2 Principal Components Analysis

Principal components are discussed in Section 6.3.1 in the context of
principal components regression. When faced with a large set of corre-
lated variables, principal components allow us to summarize this set with
a smaller number of representative variables that collectively explain most
of the variability in the original set. The principal component directions
are presented in Section 6.3.1 as directions in feature space along which
the original data are highly variable. These directions also define lines and
subspaces that are as close as possible to the data cloud. To perform

10.2 Principal Components Analysis 375

principal components regression, we simply use principal components as
predictors in a regression model in place of the original larger set of vari-
ables.
Principal component analysis (PCA) refers to the process by which prin-

principal
component
analysis

cipal components are computed, and the subsequent use of these compo-
nents in understanding the data. PCA is an unsupervised approach, since
it involves only a set of features X1, X2, . . . , Xp, and no associated response
Y . Apart from producing derived variables for use in supervised learning
problems, PCA also serves as a tool for data visualization (visualization of
the observations or visualization of the variables). We now discuss PCA in
greater detail, focusing on the use of PCA as a tool for unsupervised data
exploration, in keeping with the topic of this chapter.

10.2.1 What Are Principal Components?

Suppose that we wish to visualize n observations with measurements on a
set of p features, X1, X2, . . . , Xp, as part of an exploratory data analysis.
We could do this by examining two-dimensional scatterplots of the data,
each of which contains the n observations’ measurements on two of the
features. However, there are

(
p
2

)
= p(p−1)/2 such scatterplots; for example,

with p = 10 there are 45 plots! If p is large, then it will certainly not be
possible to look at all of them; moreover, most likely none of them will
be informative since they each contain just a small fraction of the total
information present in the data set. Clearly, a better method is required to
visualize the n observations when p is large. In particular, we would like to
find a low-dimensional representation of the data that captures as much of
the information as possible. For instance, if we can obtain a two-dimensional
representation of the data that captures most of the information, then we
can plot the observations in this low-dimensional space.
PCA provides a tool to do just this. It finds a low-dimensional represen-

tation of a data set that contains as much as possible of the variation. The
idea is that each of the n observations lives in p-dimensional space, but not
all of these dimensions are equally interesting. PCA seeks a small number
of dimensions that are as interesting as possible, where the concept of in-
teresting is measured by the amount that the observations vary along each
dimension. Each of the dimensions found by PCA is a linear combination
of the p features. We now explain the manner in which these dimensions,
or principal components, are found.
The first principal component of a set of features X1, X2, . . . , Xp is the

normalized linear combination of the features

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp (10.1)

that has the largest variance. By normalized, we mean that
∑p

j=1 φ
2
j1 = 1.

We refer to the elements φ11, . . . , φp1 as the loadings of the first principal
loading

376 10. Unsupervised Learning

component; together, the loadings make up the principal component load-
ing vector, φ1 = (φ11 φ21 . . . φp1)

T . We constrain the loadings so that
their sum of squares is equal to one, since otherwise setting these elements
to be arbitrarily large in absolute value could result in an arbitrarily large
variance.
Given a n × p data set X, how do we compute the first principal com-

ponent? Since we are only interested in variance, we assume that each of
the variables in X has been centered to have mean zero (that is, the col-
umn means of X are zero). We then look for the linear combination of the
sample feature values of the form

zi1 = φ11xi1 + φ21xi2 + . . .+ φp1xip (10.2)

that has largest sample variance, subject to the constraint that
∑p

j=1 φ
2
j1=1.

In other words, the first principal component loading vector solves the op-
timization problem

maximize
φ11,...,φp1

⎧⎪⎨
⎪⎩

1

n

n∑
i=1

⎛
⎝

p∑
j=1

φj1xij

⎞
⎠

2
⎫⎪⎬
⎪⎭

subject to

p∑
j=1

φ2
j1 = 1. (10.3)

From (10.2) we can write the objective in (10.3) as 1
n

∑n
i=1 z

2
i1. Since

1
n

∑n
i=1 xij = 0, the average of the z11, . . . , zn1 will be zero as well. Hence

the objective that we are maximizing in (10.3) is just the sample variance of
the n values of zi1. We refer to z11, . . . , zn1 as the scores of the first princi- score

pal component. Problem (10.3) can be solved via an eigen decomposition,
a standard technique in linear algebra, but details are outside of the scope
of this book.
There is a nice geometric interpretation for the first principal component.

The loading vector φ1 with elements φ11, φ21, . . . , φp1 defines a direction in
feature space along which the data vary the most. If we project the n data
points x1, . . . , xn onto this direction, the projected values are the princi-
pal component scores z11, . . . , zn1 themselves. For instance, Figure 6.14 on
page 230 displays the first principal component loading vector (green solid
line) on an advertising data set. In these data, there are only two features,
and so the observations as well as the first principal component loading
vector can be easily displayed. As can be seen from (6.19), in that data set
φ11 = 0.839 and φ21 = 0.544.
After the first principal component Z1 of the features has been deter-

mined, we can find the second principal component Z2. The second prin-
cipal component is the linear combination of X1, . . . , Xp that has maximal
variance out of all linear combinations that are uncorrelated with Z1. The
second principal component scores z12, z22, . . . , zn2 take the form

zi2 = φ12xi1 + φ22xi2 + . . .+ φp2xip, (10.4)

10.2 Principal Components Analysis 377

PC1 PC2

Murder 0.5358995 −0.4181809
Assault 0.5831836 −0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

TABLE 10.1. The principal component loading vectors, φ1 and φ2, for the
USArrests data. These are also displayed in Figure 10.1.

where φ2 is the second principal component loading vector, with elements
φ12, φ22, . . . , φp2. It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction φ2 to be orthogonal (perpen-
dicular) to the direction φ1. In the example in Figure 6.14, the observations
lie in two-dimensional space (since p = 2), and so once we have found φ1,
there is only one possibility for φ2, which is shown as a blue dashed line.
(From Section 6.3.1, we know that φ12 = 0.544 and φ22 = −0.839.) But in
a larger data set with p > 2 variables, there are multiple distinct principal
components, and they are defined in a similar manner. To find φ2, we solve
a problem similar to (10.3) with φ2 replacing φ1, and with the additional
constraint that φ2 is orthogonal to φ1.

1

Once we have computed the principal components, we can plot them
against each other in order to produce low-dimensional views of the data.
For instance, we can plot the score vector Z1 against Z2, Z1 against Z3,
Z2 against Z3, and so forth. Geometrically, this amounts to projecting
the original data down onto the subspace spanned by φ1, φ2, and φ3, and
plotting the projected points.
We illustrate the use of PCA on the USArrests data set. For each of the

50 states in the United States, the data set contains the number of arrests
per 100, 000 residents for each of three crimes: Assault, Murder, and Rape.
We also record UrbanPop (the percent of the population in each state living
in urban areas). The principal component score vectors have length n = 50,
and the principal component loading vectors have length p = 4. PCA was
performed after standardizing each variable to have mean zero and standard
deviation one. Figure 10.1 plots the first two principal components of these
data. The figure represents both the principal component scores and the
loading vectors in a single biplot display. The loadings are also given in

biplot
Table 10.1.
In Figure 10.1, we see that the first loading vector places approximately

equal weight on Assault, Murder, and Rape, with much less weight on

1On a technical note, the principal component directions φ1, φ2, φ3, . . . are the
ordered sequence of eigenvectors of the matrix XTX, and the variances of the compo-
nents are the eigenvalues. There are at most min(n − 1, p) principal components.

378 10. Unsupervised Learning

First Principal Component

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

Alabama Alaska

Arizona

Arkansas

California

Colorado
Connecticut

Delaware

Florida

Georgia

Hawaii

Idaho

Illinois

IndianaIowa
Kansas

Kentucky Louisiana

Maine Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

Ohio

Oklahoma

OregonPennsylvania

Rhode Island

South Carolina

South Dakota Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

rth Dakota

Murder

Assault

UrbanPop

Rape

FIGURE 10.1. The first two principal components for the USArrests data. The
blue state names represent the scores for the first two principal components. The
orange arrows indicate the first two principal component loading vectors (with
axes on the top and right). For example, the loading for Rape on the first com-
ponent is 0.54, and its loading on the second principal component 0.17 (the word
Rape is centered at the point (0.54, 0.17)). This figure is known as a biplot, be-
cause it displays both the principal component scores and the principal component
loadings.

UrbanPop. Hence this component roughly corresponds to a measure of overall
rates of serious crimes. The second loading vector places most of its weight
on UrbanPop and much less weight on the other three features. Hence, this
component roughly corresponds to the level of urbanization of the state.
Overall, we see that the crime-related variables (Murder, Assault, and Rape)
are located close to each other, and that the UrbanPop variable is far from
the other three. This indicates that the crime-related variables are corre-
lated with each other—states with high murder rates tend to have high
assault and rape rates—and that the UrbanPop variable is less correlated
with the other three.

10.2 Principal Components Analysis 379

We can examine differences between the states via the two principal com-
ponent score vectors shown in Figure 10.1. Our discussion of the loading
vectors suggests that states with large positive scores on the first compo-
nent, such as California, Nevada and Florida, have high crime rates, while
states like North Dakota, with negative scores on the first component, have
low crime rates. California also has a high score on the second component,
indicating a high level of urbanization, while the opposite is true for states
like Mississippi. States close to zero on both components, such as Indiana,
have approximately average levels of both crime and urbanization.

10.2.2 Another Interpretation of Principal Components

The first two principal component loading vectors in a simulated three-
dimensional data set are shown in the left-hand panel of Figure 10.2; these
two loading vectors span a plane along which the observations have the
highest variance.
In the previous section, we describe the principal component loading vec-

tors as the directions in feature space along which the data vary the most,
and the principal component scores as projections along these directions.
However, an alternative interpretation for principal components can also be
useful: principal components provide low-dimensional linear surfaces that
are closest to the observations. We expand upon that interpretation here.
The first principal component loading vector has a very special property:

it is the line in p-dimensional space that is closest to the n observations
(using average squared Euclidean distance as a measure of closeness). This
interpretation can be seen in the left-hand panel of Figure 6.15; the dashed
lines indicate the distance between each observation and the first principal
component loading vector. The appeal of this interpretation is clear: we
seek a single dimension of the data that lies as close as possible to all of
the data points, since such a line will likely provide a good summary of the
data.
The notion of principal components as the dimensions that are clos-

est to the n observations extends beyond just the first principal com-
ponent. For instance, the first two principal components of a data set
span the plane that is closest to the n observations, in terms of average
squared Euclidean distance. An example is shown in the left-hand panel
of Figure 10.2. The first three principal components of a data set span
the three-dimensional hyperplane that is closest to the n observations, and
so forth.
Using this interpretation, together the first M principal component score

vectors and the first M principal component loading vectors provide the
best M -dimensional approximation (in terms of Euclidean distance) to
the ith observation xij . This representation can be written

380 10. Unsupervised Learning

First principal component

S
ec

on
d

pr
in

ci
pa

l c
om

po
ne

nt

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

FIGURE 10.2. Ninety observations simulated in three dimensions. Left: the
first two principal component directions span the plane that best fits the data. It
minimizes the sum of squared distances from each point to the plane. Right: the
first two principal component score vectors give the coordinates of the projection
of the 90 observations onto the plane. The variance in the plane is maximized.

xij ≈
M∑

m=1

zimφjm (10.5)

(assuming the original data matrix X is column-centered). In other words,
together the M principal component score vectors and M principal com-
ponent loading vectors can give a good approximation to the data when
M is sufficiently large. When M = min(n − 1, p), then the representation

is exact: xij =
∑M

m=1 zimφjm.

10.2.3 More on PCA

Scaling the Variables

We have already mentioned that before PCA is performed, the variables
should be centered to have mean zero. Furthermore, the results obtained
when we perform PCA will also depend on whether the variables have been
individually scaled (each multiplied by a different constant). This is in
contrast to some other supervised and unsupervised learning techniques,
such as linear regression, in which scaling the variables has no effect. (In
linear regression, multiplying a variable by a factor of c will simply lead to
multiplication of the corresponding coefficient estimate by a factor of 1/c,
and thus will have no substantive effect on the model obtained.)
For instance, Figure 10.1 was obtained after scaling each of the variables

to have standard deviation one. This is reproduced in the left-hand plot in
Figure 10.3. Why does it matter that we scaled the variables? In these data,

10.2 Principal Components Analysis 381

First Principal Component

S
ec

on
d

P
rin

ci
pa

l C
om

po
ne

nt

* *

*

*

*

**

*
*

*

*

*

*

** *

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

* *

*

*

*

*

*

*

*

*

−
0.

5
0.

0
0.

5

Murder

Assault

UrbanPop

Rape

Scaled

−
3

−
2

−
1

0
1

2
3

−
10

0
−

50
0

50
10

0
15

0

First Principal Component
S

ec
on

d
P

rin
ci

pa
l C

om
po

ne
nt

* *

*

*

* *

*

*

*
*

** *
* ** *

*
**

*

*
*

*
*

*

*

*
*

*
*

* * **
*

**
*

**

*

*
*

*

*
*

−3 −2 −1 0 1 2 3

−0.5 0.0 0.5

−100 −50 0 50 100 150

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

Murder Assau

UrbanPop

Rape

Unscaled

FIGURE 10.3. Two principal component biplots for the USArrests data. Left:
the same as Figure 10.1, with the variables scaled to have unit standard deviations.
Right: principal components using unscaled data. Assault has by far the largest
loading on the first principal component because it has the highest variance among
the four variables. In general, scaling the variables to have standard deviation one
is recommended.

the variables are measured in different units; Murder, Rape, and Assault are
reported as the number of occurrences per 100, 000 people, and UrbanPop

is the percentage of the state’s population that lives in an urban area.
These four variables have variance 18.97, 87.73, 6945.16, and 209.5, respec-
tively. Consequently, if we perform PCA on the unscaled variables, then
the first principal component loading vector will have a very large loading
for Assault, since that variable has by far the highest variance. The right-
hand plot in Figure 10.3 displays the first two principal components for the
USArrests data set, without scaling the variables to have standard devia-
tion one. As predicted, the first principal component loading vector places
almost all of its weight on Assault, while the second principal component
loading vector places almost all of its weight on UrpanPop. Comparing this
to the left-hand plot, we see that scaling does indeed have a substantial
effect on the results obtained.
However, this result is simply a consequence of the scales on which the

variables were measured. For instance, if Assault were measured in units
of the number of occurrences per 100 people (rather than number of oc-
currences per 100, 000 people), then this would amount to dividing all of
the elements of that variable by 1, 000. Then the variance of the variable
would be tiny, and so the first principal component loading vector would
have a very small value for that variable. Because it is undesirable for the
principal components obtained to depend on an arbitrary choice of scaling,
we typically scale each variable to have standard deviation one before we
perform PCA.

382 10. Unsupervised Learning

In certain settings, however, the variables may be measured in the same
units. In this case, we might not wish to scale the variables to have stan-
dard deviation one before performing PCA. For instance, suppose that the
variables in a given data set correspond to expression levels for p genes.
Then since expression is measured in the same “units” for each gene, we
might choose not to scale the genes to each have standard deviation one.

Uniqueness of the Principal Components

Each principal component loading vector is unique, up to a sign flip. This
means that two different software packages will yield the same principal
component loading vectors, although the signs of those loading vectors
may differ. The signs may differ because each principal component loading
vector specifies a direction in p-dimensional space: flipping the sign has no
effect as the direction does not change. (Consider Figure 6.14—the principal
component loading vector is a line that extends in either direction, and
flipping its sign would have no effect.) Similarly, the score vectors are unique
up to a sign flip, since the variance of Z is the same as the variance of −Z.
It is worth noting that when we use (10.5) to approximate xij we multiply
zim by φjm. Hence, if the sign is flipped on both the loading and score
vectors, the final product of the two quantities is unchanged.

The Proportion of Variance Explained

In Figure 10.2, we performed PCA on a three-dimensional data set (left-
hand panel) and projected the data onto the first two principal component
loading vectors in order to obtain a two-dimensional view of the data (i.e.
the principal component score vectors; right-hand panel). We see that this
two-dimensional representation of the three-dimensional data does success-
fully capture the major pattern in the data: the orange, green, and cyan
observations that are near each other in three-dimensional space remain
nearby in the two-dimensional representation. Similarly, we have seen on
the USArrests data set that we can summarize the 50 observations and 4
variables using just the first two principal component score vectors and the
first two principal component loading vectors.
We can now ask a natural question: how much of the information in

a given data set is lost by projecting the observations onto the first few
principal components? That is, how much of the variance in the data is not
contained in the first few principal components? More generally, we are
interested in knowing the proportion of variance explained (PVE) by each

proportion
of variance
explained

principal component. The total variance present in a data set (assuming
that the variables have been centered to have mean zero) is defined as

p∑
j=1

Var(Xj) =

p∑
j=1

1

n

n∑
i=1

x2
ij , (10.6)

10.2 Principal Components Analysis 383

Principal Component

P
ro

p.
 V

ar
ia

nc
e

E
xp

la
in

ed

Principal Component

1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
um

ul
at

iv
e

P
ro

p.
 V

ar
ia

nc
e

E
xp

la
in

ed

FIGURE 10.4. Left: a scree plot depicting the proportion of variance explained
by each of the four principal components in the USArrests data. Right: the cu-
mulative proportion of variance explained by the four principal components in the
USArrests data.

and the variance explained by the mth principal component is

1

n

n∑
i=1

z2im =
1

n

n∑
i=1

⎛
⎝

p∑
j=1

φjmxij

⎞
⎠

2

. (10.7)

Therefore, the PVE of the mth principal component is given by

∑n
i=1

(∑p
j=1 φjmxij

)2
∑p

j=1

∑n
i=1 x

2
ij

. (10.8)

The PVE of each principal component is a positive quantity. In order to
compute the cumulative PVE of the first M principal components, we
can simply sum (10.8) over each of the first M PVEs. In total, there are
min(n− 1, p) principal components, and their PVEs sum to one.
In the USArrests data, the first principal component explains 62.0% of

the variance in the data, and the next principal component explains 24.7%
of the variance. Together, the first two principal components explain almost
87% of the variance in the data, and the last two principal components
explain only 13% of the variance. This means that Figure 10.1 provides a
pretty accurate summary of the data using just two dimensions. The PVE
of each principal component, as well as the cumulative PVE, is shown
in Figure 10.4. The left-hand panel is known as a scree plot, and will be

scree plot
discussed next.

Deciding How Many Principal Components to Use

In general, a n × p data matrix X has min(n − 1, p) distinct principal
components. However, we usually are not interested in all of them; rather,

384 10. Unsupervised Learning

we would like to use just the first few principal components in order to
visualize or interpret the data. In fact, we would like to use the smallest
number of principal components required to get a good understanding of the
data. How many principal components are needed? Unfortunately, there is
no single (or simple!) answer to this question.
We typically decide on the number of principal components required

to visualize the data by examining a scree plot, such as the one shown
in the left-hand panel of Figure 10.4. We choose the smallest number of
principal components that are required in order to explain a sizable amount
of the variation in the data. This is done by eyeballing the scree plot, and
looking for a point at which the proportion of variance explained by each
subsequent principal component drops off. This is often referred to as an
elbow in the scree plot. For instance, by inspection of Figure 10.4, one
might conclude that a fair amount of variance is explained by the first
two principal components, and that there is an elbow after the second
component. After all, the third principal component explains less than ten
percent of the variance in the data, and the fourth principal component
explains less than half that and so is essentially worthless.
However, this type of visual analysis is inherently ad hoc. Unfortunately,

there is no well-accepted objective way to decide how many principal com-
ponents are enough. In fact, the question of how many principal compo-
nents are enough is inherently ill-defined, and will depend on the specific
area of application and the specific data set. In practice, we tend to look
at the first few principal components in order to find interesting patterns
in the data. If no interesting patterns are found in the first few principal
components, then further principal components are unlikely to be of inter-
est. Conversely, if the first few principal components are interesting, then
we typically continue to look at subsequent principal components until no
further interesting patterns are found. This is admittedly a subjective ap-
proach, and is reflective of the fact that PCA is generally used as a tool for
exploratory data analysis.
On the other hand, if we compute principal components for use in a

supervised analysis, such as the principal components regression presented
in Section 6.3.1, then there is a simple and objective way to determine how
many principal components to use: we can treat the number of principal
component score vectors to be used in the regression as a tuning parameter
to be selected via cross-validation or a related approach. The comparative
simplicity of selecting the number of principal components for a supervised
analysis is one manifestation of the fact that supervised analyses tend to
be more clearly defined and more objectively evaluated than unsupervised
analyses.

10.3 Clustering Methods 385

10.2.4 Other Uses for Principal Components

We saw in Section 6.3.1 that we can perform regression using the principal
component score vectors as features. In fact, many statistical techniques,
such as regression, classification, and clustering, can be easily adapted to
use the n ×M matrix whose columns are the first M � p principal com-
ponent score vectors, rather than using the full n × p data matrix. This
can lead to less noisy results, since it is often the case that the signal (as
opposed to the noise) in a data set is concentrated in its first few principal
components.

10.3 Clustering Methods

Clustering refers to a very broad set of techniques for finding subgroups, or
clustering

clusters, in a data set. When we cluster the observations of a data set, we
seek to partition them into distinct groups so that the observations within
each group are quite similar to each other, while observations in different
groups are quite different from each other. Of course, to make this concrete,
we must define what it means for two or more observations to be similar
or different. Indeed, this is often a domain-specific consideration that must
be made based on knowledge of the data being studied.
For instance, suppose that we have a set of n observations, each with p

features. The n observations could correspond to tissue samples for patients
with breast cancer, and the p features could correspond to measurements
collected for each tissue sample; these could be clinical measurements, such
as tumor stage or grade, or they could be gene expression measurements.
We may have a reason to believe that there is some heterogeneity among
the n tissue samples; for instance, perhaps there are a few different un-
known subtypes of breast cancer. Clustering could be used to find these
subgroups. This is an unsupervised problem because we are trying to dis-
cover structure—in this case, distinct clusters—on the basis of a data set.
The goal in supervised problems, on the other hand, is to try to predict
some outcome vector such as survival time or response to drug treatment.
Both clustering and PCA seek to simplify the data via a small number

of summaries, but their mechanisms are different:

• PCA looks to find a low-dimensional representation of the observa-
tions that explain a good fraction of the variance;

• Clustering looks to find homogeneous subgroups among the observa-
tions.

Another application of clustering arises in marketing. We may have ac-
cess to a large number of measurements (e.g. median household income,
occupation, distance from nearest urban area, and so forth) for a large

386 10. Unsupervised Learning

number of people. Our goal is to perform market segmentation by identify-
ing subgroups of people who might be more receptive to a particular form
of advertising, or more likely to purchase a particular product. The task of
performing market segmentation amounts to clustering the people in the
data set.
Since clustering is popular in many fields, there exist a great number of

clustering methods. In this section we focus on perhaps the two best-known
clustering approaches: K-means clustering and hierarchical clustering. In

K-means
clustering

hierarchical
clustering

K-means clustering, we seek to partition the observations into a pre-specified
number of clusters. On the other hand, in hierarchical clustering, we do
not know in advance how many clusters we want; in fact, we end up with
a tree-like visual representation of the observations, called a dendrogram,

dendrogram
that allows us to view at once the clusterings obtained for each possible
number of clusters, from 1 to n. There are advantages and disadvantages
to each of these clustering approaches, which we highlight in this chapter.
In general, we can cluster observations on the basis of the features in

order to identify subgroups among the observations, or we can cluster fea-
tures on the basis of the observations in order to discover subgroups among
the features. In what follows, for simplicity we will discuss clustering obser-
vations on the basis of the features, though the converse can be performed
by simply transposing the data matrix.

10.3.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a
data set into K distinct, non-overlapping clusters. To perform K-means
clustering, we must first specify the desired number of clusters K; then the
K-means algorithm will assign each observation to exactly one of the K
clusters. Figure 10.5 shows the results obtained from performing K-means
clustering on a simulated example consisting of 150 observations in two
dimensions, using three different values of K.
The K-means clustering procedure results from a simple and intuitive

mathematical problem.We begin by defining some notation. LetC1, . . . , CK

denote sets containing the indices of the observations in each cluster. These
sets satisfy two properties:

1. C1 ∪ C2 ∪ . . . ∪ CK = {1, . . . , n}. In other words, each observation
belongs to at least one of the K clusters.

2. Ck ∩ Ck′ = ∅ for all k �= k′. In other words, the clusters are non-
overlapping: no observation belongs to more than one cluster.

For instance, if the ith observation is in the kth cluster, then i ∈ Ck. The
idea behindK-means clustering is that a good clustering is one for which the
within-cluster variation is as small as possible. The within-cluster variation

10.3 Clustering Methods 387

K=2 K=3 K=4

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional
space. Panels show the results of applying K-means clustering with different val-
ues of K, the number of clusters. The color of each observation indicates the clus-
ter to which it was assigned using the K-means clustering algorithm. Note that
there is no ordering of the clusters, so the cluster coloring is arbitrary. These
cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure.

for cluster Ck is a measure W (Ck) of the amount by which the observations
within a cluster differ from each other. Hence we want to solve the problem

minimize
C1,...,CK

{
K∑

k=1

W (Ck)

}
. (10.9)

In words, this formula says that we want to partition the observations into
K clusters such that the total within-cluster variation, summed over all K
clusters, is as small as possible.
Solving (10.9) seems like a reasonable idea, but in order to make it

actionable we need to define the within-cluster variation. There are many
possible ways to define this concept, but by far the most common choice
involves squared Euclidean distance. That is, we define

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2, (10.10)

where |Ck| denotes the number of observations in the kth cluster. In other
words, the within-cluster variation for the kth cluster is the sum of all of
the pairwise squared Euclidean distances between the observations in the
kth cluster, divided by the total number of observations in the kth cluster.
Combining (10.9) and (10.10) gives the optimization problem that defines
K-means clustering,

minimize
C1,...,CK

⎧⎨
⎩

K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2

⎫⎬
⎭ . (10.11)

388 10. Unsupervised Learning

Now, we would like to find an algorithm to solve (10.11)—that is, a
method to partition the observations intoK clusters such that the objective
of (10.11) is minimized. This is in fact a very difficult problem to solve
precisely, since there are almostKn ways to partition n observations into K
clusters. This is a huge number unless K and n are tiny! Fortunately, a very
simple algorithm can be shown to provide a local optimum—a pretty good
solution—to the K-means optimization problem (10.11). This approach is
laid out in Algorithm 10.1.

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Algorithm 10.1 is guaranteed to decrease the value of the objective
(10.11) at each step. To understand why, the following identity is illu-
minating:

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2 = 2

∑
i∈Ck

p∑
j=1

(xij − x̄kj)
2, (10.12)

where x̄kj = 1
|Ck|

∑
i∈Ck

xij is the mean for feature j in cluster Ck.

In Step 2(a) the cluster means for each feature are the constants that
minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve (10.12). This means that as the algorithm
is run, the clustering obtained will continually improve until the result no
longer changes; the objective of (10.11) will never increase. When the result
no longer changes, a local optimum has been reached. Figure 10.6 shows
the progression of the algorithm on the toy example from Figure 10.5.
K-means clustering derives its name from the fact that in Step 2(a), the
cluster centroids are computed as the mean of the observations assigned to
each cluster.
Because the K-means algorithm finds a local rather than a global opti-

mum, the results obtained will depend on the initial (random) cluster as-
signment of each observation in Step 1 of Algorithm 10.1. For this reason,
it is important to run the algorithm multiple times from different random

10.3 Clustering Methods 389

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 10.6. The progress of the K-means algorithm on the example of Fig-
ure 10.5 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (10.11) is smallest. Figure 10.7 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 10.5. In this case, the
best clustering is the one with an objective value of 235.8.
As we have seen, to perform K-means clustering, we must decide how

many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 10.3.3.

390 10. Unsupervised Learning

320.9 235.8 235.8

235.8 235.8 310.9

FIGURE 10.7. K-means clustering performed six times on the data from Fig-
ure 10.5 with K = 3, each time with a different random assignment of the ob-
servations in Step 1 of the K-means algorithm. Above each plot is the value of
the objective (10.11). Three different local optima were obtained, one of which
resulted in a smaller value of the objective and provides better separation between
the clusters. Those labeled in red all achieved the same best solution, with an
objective value of 235.8.

10.3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to
pre-specify the number of clusters K. Hierarchical clustering is an alter-
native approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means
clustering in that it results in an attractive tree-based representation of the
observations, called a dendrogram.
In this section, we describe bottom-up or agglomerative clustering.

bottom-up

agglomerative
This is the most common type of hierarchical clustering, and refers to
the fact that a dendrogram (generally depicted as an upside-down tree; see

10.3 Clustering Methods 391

−6 −4 −2 0 2

−
2

0
2

4

X1

X
2

FIGURE 10.8. Forty-five observations generated in two-dimensional space. In
reality there are three distinct classes, shown in separate colors. However, we will
treat these class labels as unknown and will seek to cluster the observations in
order to discover the classes from the data.

Figure 10.9) is built starting from the leaves and combining clusters up to
the trunk. We will begin with a discussion of how to interpret a dendrogram
and then discuss how hierarchical clustering is actually performed—that is,
how the dendrogram is built.

Interpreting a Dendrogram

We begin with the simulated data set shown in Figure 10.8, consisting of
45 observations in two-dimensional space. The data were generated from a
three-class model; the true class labels for each observation are shown in
distinct colors. However, suppose that the data were observed without the
class labels, and that we wanted to perform hierarchical clustering of the
data. Hierarchical clustering (with complete linkage, to be discussed later)
yields the result shown in the left-hand panel of Figure 10.9. How can we
interpret this dendrogram?
In the left-hand panel of Figure 10.9, each leaf of the dendrogram rep-

resents one of the 45 observations in Figure 10.8. However, as we move
up the tree, some leaves begin to fuse into branches. These correspond to
observations that are similar to each other. As we move higher up the tree,
branches themselves fuse, either with leaves or other branches. The earlier
(lower in the tree) fusions occur, the more similar the groups of observa-
tions are to each other. On the other hand, observations that fuse later
(near the top of the tree) can be quite different. In fact, this statement
can be made precise: for any two observations, we can look for the point in
the tree where branches containing those two observations are first fused.
The height of this fusion, as measured on the vertical axis, indicates how

392 10. Unsupervised Learning

0
2

4
6

8
10

0
2

4
6

8
10

0
2

4
6

8
10

FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cut results in two distinct clusters, shown in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors
were not used in clustering, but are simply used for display purposes in this figure.

different the two observations are. Thus, observations that fuse at the very
bottom of the tree are quite similar to each other, whereas observations
that fuse close to the top of the tree will tend to be quite different.
This highlights a very important point in interpreting dendrograms that

is often misunderstood. Consider the left-hand panel of Figure 10.10, which
shows a simple dendrogram obtained from hierarchically clustering nine
observations. One can see that observations 5 and 7 are quite similar to
each other, since they fuse at the lowest point on the dendrogram. Obser-
vations 1 and 6 are also quite similar to each other. However, it is tempting
but incorrect to conclude from the figure that observations 9 and 2 are
quite similar to each other on the basis that they are located near each
other on the dendrogram. In fact, based on the information contained in
the dendrogram, observation 9 is no more similar to observation 2 than it
is to observations 8, 5, and 7. (This can be seen from the right-hand panel
of Figure 10.10, in which the raw data are displayed.) To put it mathe-
matically, there are 2n−1 possible reorderings of the dendrogram, where n
is the number of leaves. This is because at each of the n− 1 points where
fusions occur, the positions of the two fused branches could be swapped
without affecting the meaning of the dendrogram. Therefore, we cannot
draw conclusions about the similarity of two observations based on their
proximity along the horizontal axis. Rather, we draw conclusions about
the similarity of two observations based on the location on the vertical axis
where branches containing those two observations first are fused.

10.3 Clustering Methods 393

3

4

1 6

9

2

8

5 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

X1

X
2

FIGURE 10.10. An illustration of how to properly interpret a dendrogram with
nine observations in two-dimensional space. Left: a dendrogram generated using
Euclidean distance and complete linkage. Observations 5 and 7 are quite similar
to each other, as are observations 1 and 6. However, observation 9 is no more
similar to observation 2 than it is to observations 8, 5, and 7, even though obser-
vations 9 and 2 are close together in terms of horizontal distance. This is because
observations 2, 8, 5, and 7 all fuse with observation 9 at the same height, approx-
imately 1.8. Right: the raw data used to generate the dendrogram can be used to
confirm that indeed, observation 9 is no more similar to observation 2 than it is
to observations 8, 5, and 7.

Now that we understand how to interpret the left-hand panel of Fig-
ure 10.9, we can move on to the issue of identifying clusters on the basis
of a dendrogram. In order to do this, we make a horizontal cut across the
dendrogram, as shown in the center and right-hand panels of Figure 10.9.
The distinct sets of observations beneath the cut can be interpreted as clus-
ters. In the center panel of Figure 10.9, cutting the dendrogram at a height
of nine results in two clusters, shown in distinct colors. In the right-hand
panel, cutting the dendrogram at a height of five results in three clusters.
Further cuts can be made as one descends the dendrogram in order to ob-
tain any number of clusters, between 1 (corresponding to no cut) and n
(corresponding to a cut at height 0, so that each observation is in its own
cluster). In other words, the height of the cut to the dendrogram serves
the same role as the K in K-means clustering: it controls the number of
clusters obtained.
Figure 10.9 therefore highlights a very attractive aspect of hierarchical

clustering: one single dendrogram can be used to obtain any number of
clusters. In practice, people often look at the dendrogram and select by eye
a sensible number of clusters, based on the heights of the fusion and the
number of clusters desired. In the case of Figure 10.9, one might choose to
select either two or three clusters. However, often the choice of where to
cut the dendrogram is not so clear.

394 10. Unsupervised Learning

The term hierarchical refers to the fact that clusters obtained by cutting
the dendrogram at a given height are necessarily nested within the clusters
obtained by cutting the dendrogram at any greater height. However, on
an arbitrary data set, this assumption of hierarchical structure might be
unrealistic. For instance, suppose that our observations correspond to a
group of people with a 50–50 split of males and females, evenly split among
Americans, Japanese, and French. We can imagine a scenario in which the
best division into two groups might split these people by gender, and the
best division into three groups might split them by nationality. In this case,
the true clusters are not nested, in the sense that the best division into three
groups does not result from taking the best division into two groups and
splitting up one of those groups. Consequently, this situation could not be
well-represented by hierarchical clustering. Due to situations such as this
one, hierarchical clustering can sometimes yield worse (i.e. less accurate)
results than K-means clustering for a given number of clusters.

The Hierarchical Clustering Algorithm

The hierarchical clustering dendrogram is obtained via an extremely simple
algorithm. We begin by defining some sort of dissimilarity measure between
each pair of observations. Most often, Euclidean distance is used; we will
discuss the choice of dissimilarity measure later in this chapter. The algo-
rithm proceeds iteratively. Starting out at the bottom of the dendrogram,
each of the n observations is treated as its own cluster. The two clusters
that are most similar to each other are then fused so that there now are
n−1 clusters. Next the two clusters that are most similar to each other are
fused again, so that there now are n − 2 clusters. The algorithm proceeds
in this fashion until all of the observations belong to one single cluster, and
the dendrogram is complete. Figure 10.11 depicts the first few steps of the
algorithm, for the data from Figure 10.9. To summarize, the hierarchical
clustering algorithm is given in Algorithm 10.2.

This algorithm seems simple enough, but one issue has not been ad-
dressed. Consider the bottom right panel in Figure 10.11. How did we
determine that the cluster {5, 7} should be fused with the cluster {8}?
We have a concept of the dissimilarity between pairs of observations, but
how do we define the dissimilarity between two clusters if one or both of
the clusters contains multiple observations? The concept of dissimilarity
between a pair of observations needs to be extended to a pair of groups
of observations. This extension is achieved by developing the notion of
linkage, which defines the dissimilarity between two groups of observa-

linkage
tions. The four most common types of linkage—complete, average, single,
and centroid—are briefly described in Table 10.2. Average, complete, and
single linkage are most popular among statisticians. Average and complete

10.3 Clustering Methods 395

Algorithm 10.2 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(
n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
used, as well as on the choice of dissimilarity measure. Hence, the resulting

396 10. Unsupervised Learning

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

1
2

3

4

5

6

7

8

9

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

X1X1

X1X1

X
2

X
2

X
2

X
2

FIGURE 10.11. An illustration of the first few steps of the hierarchical
clustering algorithm, using the data from Figure 10.10, with complete linkage
and Euclidean distance. Top Left: initially, there are nine distinct clusters,
{1}, {2}, . . . , {9}. Top Right: the two clusters that are closest together, {5} and
{7}, are fused into a single cluster. Bottom Left: the two clusters that are closest
together, {6} and {1}, are fused into a single cluster. Bottom Right: the two clus-
ters that are closest together using complete linkage, {8} and the cluster {5, 7},
are fused into a single cluster.

dendrogram typically depends quite strongly on the type of linkage used,
as is shown in Figure 10.12.

Choice of Dissimilarity Measure

Thus far, the examples in this chapter have used Euclidean distance as the
dissimilarity measure. But sometimes other dissimilarity measures might
be preferred. For example, correlation-based distance considers two obser-
vations to be similar if their features are highly correlated, even though the
observed values may be far apart in terms of Euclidean distance. This is

10.3 Clustering Methods 397

Average Linkage Complete Linkage Single Linkage

FIGURE 10.12. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.

an unusual use of correlation, which is normally computed between vari-
ables; here it is computed between the observation profiles for each pair
of observations. Figure 10.13 illustrates the difference between Euclidean
and correlation-based distance. Correlation-based distance focuses on the
shapes of observation profiles rather than their magnitudes.
The choice of dissimilarity measure is very important, as it has a strong

effect on the resulting dendrogram. In general, careful attention should be
paid to the type of data being clustered and the scientific question at hand.
These considerations should determine what type of dissimilarity measure
is used for hierarchical clustering.
For instance, consider an online retailer interested in clustering shoppers

based on their past shopping histories. The goal is to identify subgroups
of similar shoppers, so that shoppers within each subgroup can be shown
items and advertisements that are particularly likely to interest them. Sup-
pose the data takes the form of a matrix where the rows are the shoppers
and the columns are the items available for purchase; the elements of the
data matrix indicate the number of times a given shopper has purchased a
given item (i.e. a 0 if the shopper has never purchased this item, a 1 if the
shopper has purchased it once, etc.) What type of dissimilarity measure
should be used to cluster the shoppers? If Euclidean distance is used, then
shoppers who have bought very few items overall (i.e. infrequent users of
the online shopping site) will be clustered together. This may not be desir-
able. On the other hand, if correlation-based distance is used, then shoppers
with similar preferences (e.g. shoppers who have bought items A and B but

398 10. Unsupervised Learning

5 10 15 20

0
5

10
15

20

Variable Index

Observation 1
Observation 2
Observation 3

1

2

3

FIGURE 10.13. Three observations with measurements on 20 variables are
shown. Observations 1 and 3 have similar values for each variable and so there
is a small Euclidean distance between them. But they are very weakly correlated,
so they have a large correlation-based distance. On the other hand, observations
1 and 2 have quite different values for each variable, and so there is a large
Euclidean distance between them. But they are highly correlated, so there is a
small correlation-based distance between them.

never items C or D) will be clustered together, even if some shoppers with
these preferences are higher-volume shoppers than others. Therefore, for
this application, correlation-based distance may be a better choice.
In addition to carefully selecting the dissimilarity measure used, one must

also consider whether or not the variables should be scaled to have stan-
dard deviation one before the dissimilarity between the observations is
computed. To illustrate this point, we continue with the online shopping
example just described. Some items may be purchased more frequently than
others; for instance, a shopper might buy ten pairs of socks a year, but a
computer very rarely. High-frequency purchases like socks therefore tend
to have a much larger effect on the inter-shopper dissimilarities, and hence
on the clustering ultimately obtained, than rare purchases like computers.
This may not be desirable. If the variables are scaled to have standard de-
viation one before the inter-observation dissimilarities are computed, then
each variable will in effect be given equal importance in the hierarchical
clustering performed. We might also want to scale the variables to have
standard deviation one if they are measured on different scales; otherwise,
the choice of units (e.g. centimeters versus kilometers) for a particular vari-
able will greatly affect the dissimilarity measure obtained. It should come
as no surprise that whether or not it is a good decision to scale the variables
before computing the dissimilarity measure depends on the application at
hand. An example is shown in Figure 10.14. We note that the issue of
whether or not to scale the variables before performing clustering applies
to K-means clustering as well.

10.3 Clustering Methods 399

Socks Computers

0
2

4
6

8
10

Socks Computers

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Socks Computers

0
50

0
10

00
15

00

FIGURE 10.14. An eclectic online retailer sells two items: socks and computers.
Left: the number of pairs of socks, and computers, purchased by eight online shop-
pers is displayed. Each shopper is shown in a different color. If inter-observation
dissimilarities are computed using Euclidean distance on the raw variables, then
the number of socks purchased by an individual will drive the dissimilarities ob-
tained, and the number of computers purchased will have little effect. This might be
undesirable, since (1) computers are more expensive than socks and so the online
retailer may be more interested in encouraging shoppers to buy computers than
socks, and (2) a large difference in the number of socks purchased by two shoppers
may be less informative about the shoppers’ overall shopping preferences than a
small difference in the number of computers purchased. Center: the same data
is shown, after scaling each variable by its standard deviation. Now the number
of computers purchased will have a much greater effect on the inter-observation
dissimilarities obtained. Right: the same data are displayed, but now the y-axis
represents the number of dollars spent by each online shopper on socks and on
computers. Since computers are much more expensive than socks, now computer
purchase history will drive the inter-observation dissimilarities obtained.

10.3.3 Practical Issues in Clustering

Clustering can be a very useful tool for data analysis in the unsupervised
setting. However, there are a number of issues that arise in performing
clustering. We describe some of these issues here.

Small Decisions with Big Consequences

In order to perform clustering, some decisions must be made.

• Should the observations or features first be standardized in some way?
For instance, maybe the variables should be centered to have mean
zero and scaled to have standard deviation one.

400 10. Unsupervised Learning

• In the case of hierarchical clustering,

– What dissimilarity measure should be used?

– What type of linkage should be used?

– Where should we cut the dendrogram in order to obtain clusters?

• In the case of K-means clustering, how many clusters should we look
for in the data?

Each of these decisions can have a strong impact on the results obtained.
In practice, we try several different choices, and look for the one with
the most useful or interpretable solution. With these methods, there is no
single right answer—any solution that exposes some interesting aspects of
the data should be considered.

Validating the Clusters Obtained

Any time clustering is performed on a data set we will find clusters. But we
really want to know whether the clusters that have been found represent
true subgroups in the data, or whether they are simply a result of clustering
the noise. For instance, if we were to obtain an independent set of observa-
tions, then would those observations also display the same set of clusters?
This is a hard question to answer. There exist a number of techniques for
assigning a p-value to a cluster in order to assess whether there is more
evidence for the cluster than one would expect due to chance. However,
there has been no consensus on a single best approach. More details can
be found in Hastie et al. (2009).

Other Considerations in Clustering

Both K-means and hierarchical clustering will assign each observation to
a cluster. However, sometimes this might not be appropriate. For instance,
suppose that most of the observations truly belong to a small number of
(unknown) subgroups, and a small subset of the observations are quite
different from each other and from all other observations. Then since K-
means and hierarchical clustering force every observation into a cluster, the
clusters found may be heavily distorted due to the presence of outliers that
do not belong to any cluster. Mixture models are an attractive approach
for accommodating the presence of such outliers. These amount to a soft
version of K-means clustering, and are described in Hastie et al. (2009).
In addition, clustering methods generally are not very robust to pertur-

bations to the data. For instance, suppose that we cluster n observations,
and then cluster the observations again after removing a subset of the n
observations at random. One would hope that the two sets of clusters ob-
tained would be quite similar, but often this is not the case!

10.4 Lab 1: Principal Components Analysis 401

A Tempered Approach to Interpreting the Results of Clustering

We have described some of the issues associated with clustering. However,
clustering can be a very useful and valid statistical tool if used properly. We
mentioned that small decisions in how clustering is performed, such as how
the data are standardized and what type of linkage is used, can have a large
effect on the results. Therefore, we recommend performing clustering with
different choices of these parameters, and looking at the full set of results
in order to see what patterns consistently emerge. Since clustering can be
non-robust, we recommend clustering subsets of the data in order to get a
sense of the robustness of the clusters obtained. Most importantly, we must
be careful about how the results of a clustering analysis are reported. These
results should not be taken as the absolute truth about a data set. Rather,
they should constitute a starting point for the development of a scientific
hypothesis and further study, preferably on an independent data set.

10.4 Lab 1: Principal Components Analysis

In this lab, we perform PCA on the USArrests data set, which is part of
the base R package. The rows of the data set contain the 50 states, in
alphabetical order.

> states =row.names(USArrests)

> states

The columns of the data set contain the four variables.

> names(USArrests)

[1] "Murder " "Assault " "UrbanPop " "Rape"

We first briefly examine the data. We notice that the variables have vastly
different means.

> apply(USArrests , 2, mean)

Murder Assault UrbanPop Rape

7.79 170.76 65.54 21.23

Note that the apply() function allows us to apply a function—in this case,
the mean() function—to each row or column of the data set. The second
input here denotes whether we wish to compute the mean of the rows, 1,
or the columns, 2. We see that there are on average three times as many
rapes as murders, and more than eight times as many assaults as rapes.
We can also examine the variances of the four variables using the apply()

function.

> apply(USArrests , 2, var)

Murder Assault UrbanPop Rape

19.0 6945.2 209.5 87.7

402 10. Unsupervised Learning

Not surprisingly, the variables also have vastly different variances: the
UrbanPop variable measures the percentage of the population in each state
living in an urban area, which is not a comparable number to the num-
ber of rapes in each state per 100,000 individuals. If we failed to scale the
variables before performing PCA, then most of the principal components
that we observed would be driven by the Assault variable, since it has by
far the largest mean and variance. Thus, it is important to standardize the
variables to have mean zero and standard deviation one before performing
PCA.
We now perform principal components analysis using the prcomp() func-

prcomp()
tion, which is one of several functions in R that perform PCA.

> pr.out =prcomp (USArrests , scale =TRUE)

By default, the prcomp() function centers the variables to have mean zero.
By using the option scale=TRUE, we scale the variables to have standard
deviation one. The output from prcomp() contains a number of useful quan-
tities.

> names(pr.out)

[1] "sdev" "rotation " "center " "scale" "x"

The center and scale components correspond to the means and standard
deviations of the variables that were used for scaling prior to implementing
PCA.

> pr.out$center

Murder Assault UrbanPop Rape

7.79 170.76 65.54 21.23

> pr.out$scale

Murder Assault UrbanPop Rape

4.36 83.34 14.47 9.37

The rotation matrix provides the principal component loadings; each col-
umn of pr.out$rotation contains the corresponding principal component
loading vector.2

> pr.out$rotation

PC1 PC2 PC3 PC4

Murder -0.536 0.418 -0.341 0.649

Assault -0.583 0.188 -0.268 -0.743

UrbanPop -0.278 -0.873 -0.378 0.134

Rape -0.543 -0.167 0.818 0.089

We see that there are four distinct principal components. This is to be
expected because there are in general min(n − 1, p) informative principal
components in a data set with n observations and p variables.

2This function names it the rotation matrix, because when we matrix-multiply the
X matrix by pr.out$rotation, it gives us the coordinates of the data in the rotated
coordinate system. These coordinates are the principal component scores.

10.4 Lab 1: Principal Components Analysis 403

Using the prcomp() function, we do not need to explicitly multiply the
data by the principal component loading vectors in order to obtain the
principal component score vectors. Rather the 50 × 4 matrix x has as its
columns the principal component score vectors. That is, the kth column is
the kth principal component score vector.

> dim(pr.out$x)

[1] 50 4

We can plot the first two principal components as follows:

> biplot (pr.out , scale =0)

The scale=0 argument to biplot() ensures that the arrows are scaled to
biplot()

represent the loadings; other values for scale give slightly different biplots
with different interpretations.
Notice that this figure is a mirror image of Figure 10.1. Recall that

the principal components are only unique up to a sign change, so we can
reproduce Figure 10.1 by making a few small changes:

> pr.out$rotation=-pr.out$rotation

> pr.out$x=-pr.out$x

> biplot (pr.out , scale =0)

The prcomp() function also outputs the standard deviation of each prin-
cipal component. For instance, on the USArrests data set, we can access
these standard deviations as follows:

> pr.out$sdev

[1] 1.575 0.995 0.597 0.416

The variance explained by each principal component is obtained by squar-
ing these:

> pr.var =pr.out$sdev ^2

> pr.var

[1] 2.480 0.990 0.357 0.173

To compute the proportion of variance explained by each principal compo-
nent, we simply divide the variance explained by each principal component
by the total variance explained by all four principal components:

> pve=pr.var/sum(pr.var)

> pve

[1] 0.6201 0.2474 0.0891 0.0434

We see that the first principal component explains 62.0% of the variance
in the data, the next principal component explains 24.7% of the variance,
and so forth. We can plot the PVE explained by each component, as well
as the cumulative PVE, as follows:

> plot(pve , xlab=" Principal Component ", ylab=" Proportion of

Variance Explained ", ylim=c(0,1) ,type=’b’)

> plot(cumsum (pve), xlab=" Principal Component ", ylab ="

Cumulative Proportion of Variance Explained ", ylim=c(0,1) ,

type=’b’)

404 10. Unsupervised Learning

The result is shown in Figure 10.4. Note that the function cumsum() com-
cumsum()

putes the cumulative sum of the elements of a numeric vector. For instance:

> a=c(1,2,8,-3)

> cumsum (a)

[1] 1 3 11 8

10.5 Lab 2: Clustering

10.5.1 K-Means Clustering

The function kmeans() performs K-means clustering in R. We begin with
kmeans()

a simple simulated example in which there truly are two clusters in the
data: the first 25 observations have a mean shift relative to the next 25
observations.

> set.seed (2)

> x=matrix (rnorm (50*2) , ncol =2)

> x[1:25 ,1]=x[1:25 ,1]+3

> x[1:25 ,2]=x[1:25 ,2] -4

We now perform K-means clustering with K = 2.

> km.out =kmeans (x,2, nstart =20)

The cluster assignments of the 50 observations are contained in
km.out$cluster.

> km.out$cluster

[1] 2 1 1 1 1

[30] 1

The K-means clustering perfectly separated the observations into two clus-
ters even though we did not supply any group information to kmeans(). We
can plot the data, with each observation colored according to its cluster
assignment.

> plot(x, col =(km.out$cluster +1) , main="K-Means Clustering

Results with K=2", xlab ="", ylab="", pch =20, cex =2)

Here the observations can be easily plotted because they are two-dimensional.
If there were more than two variables then we could instead perform PCA
and plot the first two principal components score vectors.
In this example, we knew that there really were two clusters because

we generated the data. However, for real data, in general we do not know
the true number of clusters. We could instead have performed K-means
clustering on this example with K = 3.

> set.seed (4)

> km.out =kmeans (x,3, nstart =20)

> km.out

K-means clustering with 3 clusters of sizes 10, 23, 17

10.5 Lab 2: Clustering 405

Cluster means:

[,1] [,2]

1 2.3001545 -2.69622023

2 -0.3820397 -0.08740753

3 3.7789567 -4.56200798

Clustering vector :

[1] 3 1 3 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

Within cluster sum of squares by cluster :

[1] 19.56137 52.67700 25.74089

(between_SS / total_SS = 79.3 %)

Available components :

[1] "cluster " "centers " "totss" "withinss "

"tot .withinss " "betweenss " "size"

> plot(x, col =(km.out$cluster +1) , main="K-Means Clustering

Results with K=3", xlab ="", ylab="", pch =20, cex =2)

When K = 3, K-means clustering splits up the two clusters.
To run the kmeans() function in R with multiple initial cluster assign-

ments, we use the nstart argument. If a value of nstart greater than one
is used, then K-means clustering will be performed using multiple random
assignments in Step 1 of Algorithm 10.1, and the kmeans() function will
report only the best results. Here we compare using nstart=1 to nstart=20.

> set.seed (3)

> km.out =kmeans (x,3, nstart =1)

> km.out$tot .withinss

[1] 104.3319

> km.out =kmeans (x,3, nstart =20)

> km.out$tot .withinss

[1] 97.9793

Note that km.out$tot.withinss is the total within-cluster sum of squares,
which we seek to minimize by performing K-means clustering (Equation
10.11). The individual within-cluster sum-of-squares are contained in the
vector km.out$withinss.
We strongly recommend always running K-means clustering with a large

value of nstart, such as 20 or 50, since otherwise an undesirable local
optimum may be obtained.
When performing K-means clustering, in addition to using multiple ini-

tial cluster assignments, it is also important to set a random seed using the
set.seed() function. This way, the initial cluster assignments in Step 1 can
be replicated, and the K-means output will be fully reproducible.

406 10. Unsupervised Learning

10.5.2 Hierarchical Clustering

The hclust() function implements hierarchical clustering in R. In the fol-
hclust()

lowing example we use the data from Section 10.5.1 to plot the hierarchical
clustering dendrogram using complete, single, and average linkage cluster-
ing, with Euclidean distance as the dissimilarity measure. We begin by
clustering observations using complete linkage. The dist() function is used

dist()
to compute the 50× 50 inter-observation Euclidean distance matrix.

> hc.complete =hclust (dist(x), method =" complete ")

We could just as easily perform hierarchical clustering with average or
single linkage instead:

> hc.average =hclust (dist(x), method =" average ")

> hc.single =hclust (dist(x), method =" single ")

We can now plot the dendrograms obtained using the usual plot() function.
The numbers at the bottom of the plot identify each observation.

> par(mfrow =c(1,3))

> plot(hc.complete ,main =" Complete Linkage ", xlab="", sub ="",

cex =.9)

> plot(hc.average , main =" Average Linkage ", xlab="", sub ="",

cex =.9)

> plot(hc.single , main=" Single Linkage ", xlab="", sub ="",

cex =.9)

To determine the cluster labels for each observation associated with a
given cut of the dendrogram, we can use the cutree() function:

cutree()

> cutree (hc.complete , 2)

[1] 1 2 2 2 2

[30] 2

> cutree (hc.average , 2)

[1] 1 2 2 2 2

[30] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

> cutree (hc.single , 2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[30] 1

For this data, complete and average linkage generally separate the observa-
tions into their correct groups. However, single linkage identifies one point
as belonging to its own cluster. A more sensible answer is obtained when
four clusters are selected, although there are still two singletons.

> cutree (hc.single , 4)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 3 3

[30] 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3

To scale the variables before performing hierarchical clustering of the
observations, we use the scale() function:

scale()

> xsc=scale (x)

> plot(hclust (dist(xsc), method =" complete "), main =" Hierarchical

Clustering with Scaled Features ")

10.6 Lab 3: NCI60 Data Example 407

Correlation-based distance can be computed using the as.dist() func-
as.dist()

tion, which converts an arbitrary square symmetric matrix into a form that
the hclust() function recognizes as a distance matrix. However, this only
makes sense for data with at least three features since the absolute corre-
lation between any two observations with measurements on two features is
always 1. Hence, we will cluster a three-dimensional data set.

> x=matrix (rnorm (30*3) , ncol =3)

> dd=as.dist(1- cor(t(x)))

> plot(hclust (dd, method =" complete "), main=" Complete Linkage

with Correlation -Based Distance ", xlab="", sub ="")

10.6 Lab 3: NCI60 Data Example

Unsupervised techniques are often used in the analysis of genomic data.
In particular, PCA and hierarchical clustering are popular tools. We illus-
trate these techniques on the NCI60 cancer cell line microarray data, which
consists of 6,830 gene expression measurements on 64 cancer cell lines.

> library (ISLR)

> nci.labs=NCI60$labs

> nci.data=NCI60$data

Each cell line is labeled with a cancer type. We do not make use of the
cancer types in performing PCA and clustering, as these are unsupervised
techniques. But after performing PCA and clustering, we will check to
see the extent to which these cancer types agree with the results of these
unsupervised techniques.
The data has 64 rows and 6,830 columns.

> dim(nci.data)

[1] 64 6830

We begin by examining the cancer types for the cell lines.

> nci.labs [1:4]

[1] "CNS " "CNS" "CNS" "RENAL"

> table(nci .labs)

nci .labs

BREAST CNS COLON K562A -repro K562B -repro

7 5 7 1 1

LEUKEMIA MCF7A -repro MCF7D -repro MELANOMA NSCLC

6 1 1 8 9

OVARIAN PROSTATE RENAL UNKNOWN

6 2 9 1

408 10. Unsupervised Learning

10.6.1 PCA on the NCI60 Data

We first perform PCA on the data after scaling the variables (genes) to
have standard deviation one, although one could reasonably argue that it
is better not to scale the genes.

> pr.out =prcomp (nci.data , scale=TRUE)

We now plot the first few principal component score vectors, in order to
visualize the data. The observations (cell lines) corresponding to a given
cancer type will be plotted in the same color, so that we can see to what
extent the observations within a cancer type are similar to each other. We
first create a simple function that assigns a distinct color to each element
of a numeric vector. The function will be used to assign a color to each of
the 64 cell lines, based on the cancer type to which it corresponds.

Cols=function (vec){

+ cols=rainbow (length (unique (vec)))

+ return (cols[as.numeric (as.factor (vec))])

+ }

Note that the rainbow() function takes as its argument a positive integer,
rainbow()

and returns a vector containing that number of distinct colors. We now can
plot the principal component score vectors.

> par(mfrow =c(1,2))

> plot(pr.out$x [,1:2], col =Cols(nci .labs), pch =19,

xlab ="Z1",ylab="Z2")

> plot(pr.out$x[,c(1,3)], col =Cols(nci.labs), pch =19,

xlab ="Z1",ylab="Z3")

The resulting plots are shown in Figure 10.15. On the whole, cell lines
corresponding to a single cancer type do tend to have similar values on the
first few principal component score vectors. This indicates that cell lines
from the same cancer type tend to have pretty similar gene expression
levels.
We can obtain a summary of the proportion of variance explained (PVE)

of the first few principal components using the summary() method for a
prcomp object (we have truncated the printout):

> summary (pr.out)

Importance of components :

PC1 PC2 PC3 PC4 PC5

Standard deviation 27.853 21.4814 19.8205 17.0326 15.9718

Proportion of Variance 0.114 0.0676 0.0575 0.0425 0.0374

Cumulative Proportion 0.114 0.1812 0.2387 0.2812 0.3185

Using the plot() function, we can also plot the variance explained by the
first few principal components.

> plot(pr.out)

Note that the height of each bar in the bar plot is given by squaring the
corresponding element of pr.out$sdev. However, it is more informative to

10.6 Lab 3: NCI60 Data Example 409

−40 −20 0 20 40 60

−
60

−
40

−
20

0
20

−40 −20 0 20 40 60

−
40

−
20

0
20

40

Z1Z1

Z
2

Z
3

FIGURE 10.15. Projections of the NCI60 cancer cell lines onto the first three
principal components (in other words, the scores for the first three principal com-
ponents). On the whole, observations belonging to a single cancer type tend to
lie near each other in this low-dimensional space. It would not have been possible
to visualize the data without using a dimension reduction method such as PCA,
since based on the full data set there are

(
6,830

2

)
possible scatterplots, none of

which would have been particularly informative.

plot the PVE of each principal component (i.e. a scree plot) and the cu-
mulative PVE of each principal component. This can be done with just a
little work.

> pve =100* pr.out$sdev ^2/ sum(pr.out$sdev ^2)

> par(mfrow =c(1,2))

> plot(pve , type ="o", ylab="PVE ", xlab=" Principal Component ",

col =" blue")

> plot(cumsum (pve), type="o", ylab =" Cumulative PVE", xlab="

Principal Component ", col =" brown3 ")

(Note that the elements of pve can also be computed directly from the sum-
mary, summary(pr.out)$importance[2,], and the elements of cumsum(pve)

are given by summary(pr.out)$importance[3,].) The resulting plots are shown
in Figure 10.16. We see that together, the first seven principal components
explain around 40% of the variance in the data. This is not a huge amount
of the variance. However, looking at the scree plot, we see that while each
of the first seven principal components explain a substantial amount of
variance, there is a marked decrease in the variance explained by further
principal components. That is, there is an elbow in the plot after approx-
imately the seventh principal component. This suggests that there may
be little benefit to examining more than seven or so principal components
(though even examining seven principal components may be difficult).

410 10. Unsupervised Learning

0 10 20 30 40 50 60

0
2

4
6

8
10

Principal Component

P
V

E

0 10 20 30 40 50 60

20
40

60
80

10
0

Principal Component

C
um

ul
at

iv
e

P
V

E

FIGURE 10.16. The PVE of the principal components of the NCI60 cancer cell
line microarray data set. Left: the PVE of each principal component is shown.
Right: the cumulative PVE of the principal components is shown. Together, all
principal components explain 100% of the variance.

10.6.2 Clustering the Observations of the NCI60 Data

We now proceed to hierarchically cluster the cell lines in the NCI60 data,
with the goal of finding out whether or not the observations cluster into
distinct types of cancer. To begin, we standardize the variables to have
mean zero and standard deviation one. As mentioned earlier, this step is
optional and should be performed only if we want each gene to be on the
same scale.

> sd.data=scale(nci.data)

We now perform hierarchical clustering of the observations using complete,
single, and average linkage. Euclidean distance is used as the dissimilarity
measure.

> par(mfrow =c(1,3))

> data.dist=dist(sd.data)

> plot(hclust (data.dist), labels =nci.labs , main=" Complete

Linkage ", xlab ="", sub ="", ylab ="")

> plot(hclust (data.dist , method =" average "), labels =nci.labs ,

main=" Average Linkage ", xlab ="", sub ="", ylab ="")

> plot(hclust (data.dist , method =" single "), labels =nci.labs ,

main=" Single Linkage ", xlab="", sub ="", ylab ="")

The results are shown in Figure 10.17. We see that the choice of linkage
certainly does affect the results obtained. Typically, single linkage will tend
to yield trailing clusters: very large clusters onto which individual observa-
tions attach one-by-one. On the other hand, complete and average linkage
tend to yield more balanced, attractive clusters. For this reason, complete
and average linkage are generally preferred to single linkage. Clearly cell
lines within a single cancer type do tend to cluster together, although the

10.6 Lab 3: NCI60 Data Example 411

B
R

E
A

S
T

B
R

E
A

S
T

C
N

S
C

N
S

R
E

N
A

L
B

R
E

A
S

T
N

S
C

LC
R

E
N

A
L

M
E

LA
N

O
M

A
O

V
A

R
IA

N
O

V
A

R
IA

N
N

S
C

LC
O

V
A

R
IA

N
C

O
LO

N
C

O
LO

N
O

V
A

R
IA

N
P

R
O

S
TA

T
E

N
S

C
LC

N
S

C
LC

N
S

C
LC

P
R

O
S

TA
T

E
N

S
C

LC
M

E
LA

N
O

M
A

R
E

N
A

L
R

E
N

A
L

R
E

N
A

L
O

V
A

R
IA

N
U

N
K

N
O

W
N

O
V

A
R

IA
N

N
S

C
LC

C
N

S
C

N
S

C
N

S
N

S
C

LC
R

E
N

A
L

R
E

N
A

L
R

E
N

A
L

R
E

N
A

L
N

S
C

LC
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
B

R
E

A
S

T
B

R
E

A
S

T
C

O
LO

N
C

O
LO

N
C

O
LO

N
C

O
LO

N
C

O
LO

N
B

R
E

A
S

T
M

C
F

7A
−

re
pr

o
B

R
E

A
S

T
M

C
F

7D
−

re
pr

o
LE

U
K

E
M

IA
LE

U
K

E
M

IA LE
U

K
E

M
IA

LE
U

K
E

M
IA

K
56

2B
−

re
pr

o
K

56
2A

−
re

pr
o LE

U
K

E
M

IA
LE

U
K

E
M

IA

40
80

12
0

16
0

Complete Linkage

LE
U

K
E

M
IA

LE
U

K
E

M
IA

LE
U

K
E

M
IA LE

U
K

E
M

IA
LE

U
K

E
M

IA
LE

U
K

E
M

IA
K

56
2B

−
re

pr
o

K
56

2A
−

re
pr

o
R

E
N

A
L

N
S

C
LC

B
R

E
A

S
T

N
S

C
LC

B
R

E
A

S
T

M
C

F
7A

−
re

pr
o

B
R

E
A

S
T

M
C

F
7D

−
re

pr
o

C
O

LO
N

C
O

LO
N

C
O

LO
N

R
E

N
A

L
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
B

R
E

A
S

T
B

R
E

A
S

T M
E

LA
N

O
M

A
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A O
V

A
R

IA
N

O
V

A
R

IA
N

N
S

C
LC

O
V

A
R

IA
N

U
N

K
N

O
W

N
O

V
A

R
IA

N
N

S
C

LC
M

E
LA

N
O

M
A

C
N

S
C

N
S

C
N

S
R

E
N

A
L

R
E

N
A

L
R

E
N

A
L

R
E

N
A

L
R

E
N

A
L

R
E

N
A

L
R

E
N

A
L

P
R

O
S

TA
T

E
N

S
C

LC
N

S
C

LC
N

S
C

LC
N

S
C

LC
O

V
A

R
IA

N
P

R
O

S
TA

T
E

N
S

C
LC

C
O

LO
N

C
O

LO
N

O
V

A
R

IA
N

C
O

LO
N

C
O

LO
N

C
N

S
C

N
S

B
R

E
A

S
T

B
R

E
A

S
T

40
60

80
10

0
12

0

Average Linkage

LE
U

K
E

M
IA

R
E

N
A

L
B

R
E

A
S

T
LE

U
K

E
M

IA
LE

U
K

E
M

IA
C

N
S

LE
U

K
E

M
IA

LE
U

K
E

M
IA

K
56

2B
−

re
pr

o
K

56
2A

−
re

pr
o

N
S

C
LC

LE
U

K
E

M
IA

O
V

A
R

IA
N

N
S

C
LC

C
N

S
B

R
E

A
S

T
N

S
C

LC
O

V
A

R
IA

N
C

O
LO

N
B

R
E

A
S

T
M

E
LA

N
O

M
A

R
E

N
A

L
M

E
LA

N
O

M
A

B
R

E
A

S
T

B
R

E
A

S
T

M
E

LA
N

O
M

A
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
M

E
LA

N
O

M
A

M
E

LA
N

O
M

A
B

R
E

A
S

T
O

V
A

R
IA

N
C

O
LO

N
M

C
F

7A
−

re
pr

o
B

R
E

A
S

T
M

C
F

7D
−

re
pr

o
U

N
K

N
O

W
N

O
V

A
R

IA
N

N
S

C
LC

N
S

C
LC

P
R

O
S

TA
T

E
M

E
LA

N
O

M
A

C
O

LO
N

O
V

A
R

IA
N

N
S

C
LC

R
E

N
A

L
C

O
LO

N
P

R
O

S
TA

T
E

C
O

LO
N

O
V

A
R

IA
N

C
O

LO
N

C
O

LO
N

N
S

C
LC

N
S

C
LC

R
E

N
A

L
N

S
C

LC
R

E
N

A
L

R
E

N
A

L
R

E
N

A
L

R
E

N
A

L
R

E
N

A
L

C
N

S
C

N
S

C
N

S

40
60

80
10

0

Single Linkage

FIGURE 10.17. The NCI60 cancer cell line microarray data, clustered with av-
erage, complete, and single linkage, and using Euclidean distance as the dissim-
ilarity measure. Complete and average linkage tend to yield evenly sized clusters
whereas single linkage tends to yield extended clusters to which single leaves are
fused one by one.

412 10. Unsupervised Learning

clustering is not perfect. We will use complete linkage hierarchical cluster-
ing for the analysis that follows.
We can cut the dendrogram at the height that will yield a particular

number of clusters, say four:

> hc.out =hclust (dist(sd.data))

> hc.clusters =cutree (hc.out ,4)

> table(hc.clusters ,nci .labs)

There are some clear patterns. All the leukemia cell lines fall in cluster 3,
while the breast cancer cell lines are spread out over three different clusters.
We can plot the cut on the dendrogram that produces these four clusters:

> par(mfrow =c(1,1))

> plot(hc.out , labels =nci.labs)

> abline (h=139, col =" red ")

The abline() function draws a straight line on top of any existing plot
in R. The argument h=139 plots a horizontal line at height 139 on the den-
drogram; this is the height that results in four distinct clusters. It is easy
to verify that the resulting clusters are the same as the ones we obtained
using cutree(hc.out,4).
Printing the output of hclust gives a useful brief summary of the object:

> hc.out

Call:

hclust (d = dist(dat))

Cluster method : complete

Distance : euclidean

Number of objects : 64

We claimed earlier in Section 10.3.2 that K-means clustering and hier-
archical clustering with the dendrogram cut to obtain the same number
of clusters can yield very different results. How do these NCI60 hierarchical
clustering results compare to what we get if we performK-means clustering
with K = 4?

> set.seed (2)

> km.out =kmeans (sd.data , 4, nstart =20)

> km.clusters =km. out$cluster

> table(km.clusters ,hc.clusters)

hc.clusters

km. clusters 1 2 3 4

1 11 0 0 9

2 0 0 8 0

3 9 0 0 0

4 20 7 0 0

We see that the four clusters obtained using hierarchical clustering and K-
means clustering are somewhat different. Cluster 2 inK-means clustering is
identical to cluster 3 in hierarchical clustering. However, the other clusters

10.7 Exercises 413

differ: for instance, cluster 4 in K-means clustering contains a portion of
the observations assigned to cluster 1 by hierarchical clustering, as well as
all of the observations assigned to cluster 2 by hierarchical clustering.
Rather than performing hierarchical clustering on the entire data matrix,

we can simply perform hierarchical clustering on the first few principal
component score vectors, as follows:

> hc.out =hclust (dist(pr.out$x [,1:5]))

> plot(hc.out , labels =nci.labs , main=" Hier. Clust . on First

Five Score Vectors ")

> table(cutree (hc.out ,4) , nci .labs)

Not surprisingly, these results are different from the ones that we obtained
when we performed hierarchical clustering on the full data set. Sometimes
performing clustering on the first few principal component score vectors
can give better results than performing clustering on the full data. In this
situation, we might view the principal component step as one of denois-
ing the data. We could also perform K-means clustering on the first few
principal component score vectors rather than the full data set.

10.7 Exercises

Conceptual

1. This problem involves the K-means clustering algorithm.
(a) Prove (10.12).

(b) On the basis of this identity, argue that the K-means clustering
algorithm (Algorithm 10.1) decreases the objective (10.11) at
each iteration.

2. Suppose that we have four observations, for which we compute a
dissimilarity matrix, given by

⎡
⎢⎢⎣

0.3 0.4 0.7
0.3 0.5 0.8
0.4 0.5 0.45
0.7 0.8 0.45

⎤
⎥⎥⎦ .

For instance, the dissimilarity between the first and second obser-
vations is 0.3, and the dissimilarity between the second and fourth
observations is 0.8.

(a) On the basis of this dissimilarity matrix, sketch the dendrogram
that results from hierarchically clustering these four observa-
tions using complete linkage. Be sure to indicate on the plot the
height at which each fusion occurs, as well as the observations
corresponding to each leaf in the dendrogram.

414 10. Unsupervised Learning

(b) Repeat (a), this time using single linkage clustering.

(c) Suppose that we cut the dendogram obtained in (a) such that
two clusters result. Which observations are in each cluster?

(d) Suppose that we cut the dendogram obtained in (b) such that
two clusters result. Which observations are in each cluster?

(e) It is mentioned in the chapter that at each fusion in the den-
drogram, the position of the two clusters being fused can be
swapped without changing the meaning of the dendrogram. Draw
a dendrogram that is equivalent to the dendrogram in (a), for
which two or more of the leaves are repositioned, but for which
the meaning of the dendrogram is the same.

3. In this problem, you will perform K-means clustering manually, with
K = 2, on a small example with n = 6 observations and p = 2
features. The observations are as follows.

Obs. X1 X2

1 1 4
2 1 3
3 0 4
4 5 1
5 6 2
6 4 0

(a) Plot the observations.

(b) Randomly assign a cluster label to each observation. You can
use the sample() command in R to do this. Report the cluster
labels for each observation.

(c) Compute the centroid for each cluster.

(d) Assign each observation to the centroid to which it is closest, in
terms of Euclidean distance. Report the cluster labels for each
observation.

(e) Repeat (c) and (d) until the answers obtained stop changing.

(f) In your plot from (a), color the observations according to the
cluster labels obtained.

4. Suppose that for a particular data set, we perform hierarchical clus-
tering using single linkage and using complete linkage. We obtain two
dendrograms.

(a) At a certain point on the single linkage dendrogram, the clus-
ters {1, 2, 3} and {4, 5} fuse. On the complete linkage dendro-
gram, the clusters {1, 2, 3} and {4, 5} also fuse at a certain point.
Which fusion will occur higher on the tree, or will they fuse at
the same height, or is there not enough information to tell?

10.7 Exercises 415

(b) At a certain point on the single linkage dendrogram, the clusters
{5} and {6} fuse. On the complete linkage dendrogram, the clus-
ters {5} and {6} also fuse at a certain point. Which fusion will
occur higher on the tree, or will they fuse at the same height, or
is there not enough information to tell?

5. In words, describe the results that you would expect if you performed
K-means clustering of the eight shoppers in Figure 10.14, on the
basis of their sock and computer purchases, with K = 2. Give three
answers, one for each of the variable scalings displayed. Explain.

6. A researcher collects expression measurements for 1,000 genes in 100
tissue samples. The data can be written as a 1, 000 × 100 matrix,
which we call X, in which each row represents a gene and each col-
umn a tissue sample. Each tissue sample was processed on a different
day, and the columns of X are ordered so that the samples that were
processed earliest are on the left, and the samples that were processed
later are on the right. The tissue samples belong to two groups: con-
trol (C) and treatment (T). The C and T samples were processed
in a random order across the days. The researcher wishes to deter-
mine whether each gene’s expression measurements differ between the
treatment and control groups.

As a pre-analysis (before comparing T versus C), the researcher per-
forms a principal component analysis of the data, and finds that the
first principal component (a vector of length 100) has a strong linear
trend from left to right, and explains 10% of the variation. The re-
searcher now remembers that each patient sample was run on one of
two machines, A and B, and machine A was used more often in the
earlier times while B was used more often later. The researcher has
a record of which sample was run on which machine.

(a) Explain what it means that the first principal component “ex-
plains 10% of the variation”.

(b) The researcher decides to replace the (i, j)th element of X with

xij − zi1φj1

where zi1 is the ith score, and φj1 is the jth loading, for the first
principal component. He will then perform a two-sample t-test
on each gene in this new data set in order to determine whether
its expression differs between the two conditions. Critique this
idea, and suggest a better approach.

(c) Design and run a small simulation experiment to demonstrate
the superiority of your idea.

416 10. Unsupervised Learning

Applied

7. In the chapter, we mentioned the use of correlation-based distance
and Euclidean distance as dissimilarity measures for hierarchical clus-
tering. It turns out that these two measures are almost equivalent: if
each observation has been centered to have mean zero and standard
deviation one, and if we let rij denote the correlation between the ith
and jth observations, then the quantity 1− rij is proportional to the
squared Euclidean distance between the ith and jth observations.

On the USArrests data, show that this proportionality holds.

Hint: The Euclidean distance can be calculated using the dist() func-
tion, and correlations can be calculated using the cor() function.

8. In Section 10.2.3, a formula for calculating PVE was given in Equa-
tion 10.8. We also saw that the PVE can be obtained using the sdev

output of the prcomp() function.

On the USArrests data, calculate PVE in two ways:

(a) Using the sdev output of the prcomp() function, as was done in
Section 10.2.3.

(b) By applying Equation 10.8 directly. That is, use the prcomp()

function to compute the principal component loadings. Then,
use those loadings in Equation 10.8 to obtain the PVE.

These two approaches should give the same results.

Hint: You will only obtain the same results in (a) and (b) if the same
data is used in both cases. For instance, if in (a) you performed
prcomp() using centered and scaled variables, then you must center
and scale the variables before applying Equation 10.3 in (b).

9. Consider the USArrests data. We will now perform hierarchical clus-
tering on the states.

(a) Using hierarchical clustering with complete linkage and
Euclidean distance, cluster the states.

(b) Cut the dendrogram at a height that results in three distinct
clusters. Which states belong to which clusters?

(c) Hierarchically cluster the states using complete linkage and Eu-
clidean distance, after scaling the variables to have standard de-
viation one.

(d) What effect does scaling the variables have on the hierarchical
clustering obtained? In your opinion, should the variables be
scaled before the inter-observation dissimilarities are computed?
Provide a justification for your answer.

10.7 Exercises 417

10. In this problem, you will generate simulated data, and then perform
PCA and K-means clustering on the data.

(a) Generate a simulated data set with 20 observations in each of
three classes (i.e. 60 observations total), and 50 variables.

Hint: There are a number of functions in R that you can use to
generate data. One example is the rnorm() function; runif() is
another option. Be sure to add a mean shift to the observations
in each class so that there are three distinct classes.

(b) Perform PCA on the 60 observations and plot the first two prin-
cipal component score vectors. Use a different color to indicate
the observations in each of the three classes. If the three classes
appear separated in this plot, then continue on to part (c). If
not, then return to part (a) and modify the simulation so that
there is greater separation between the three classes. Do not
continue to part (c) until the three classes show at least some
separation in the first two principal component score vectors.

(c) Perform K-means clustering of the observations with K = 3.
How well do the clusters that you obtained in K-means cluster-
ing compare to the true class labels?

Hint: You can use the table() function in R to compare the true
class labels to the class labels obtained by clustering. Be careful
how you interpret the results: K-means clustering will arbitrarily
number the clusters, so you cannot simply check whether the true
class labels and clustering labels are the same.

(d) Perform K-means clustering with K = 2. Describe your results.

(e) Now performK-means clustering with K = 4, and describe your
results.

(f) Now perform K-means clustering with K = 3 on the first two
principal component score vectors, rather than on the raw data.
That is, perform K-means clustering on the 60 × 2 matrix of
which the first column is the first principal component score
vector, and the second column is the second principal component
score vector. Comment on the results.

(g) Using the scale() function, perform K-means clustering with
K = 3 on the data after scaling each variable to have standard
deviation one. How do these results compare to those obtained
in (b)? Explain.

11. On the book website, www.StatLearning.com, there is a gene expres-
sion data set (Ch10Ex11.csv) that consists of 40 tissue samples with
measurements on 1,000 genes. The first 20 samples are from healthy
patients, while the second 20 are from a diseased group.

www.StatLearning.com

418 10. Unsupervised Learning

(a) Load in the data using read.csv(). You will need to select
header=F.

(b) Apply hierarchical clustering to the samples using correlation-
based distance, and plot the dendrogram. Do the genes separate
the samples into the two groups? Do your results depend on the
type of linkage used?

(c) Your collaborator wants to know which genes differ the most
across the two groups. Suggest a way to answer this question,
and apply it here.

Index

Cp, 78, 205, 206, 210–213
R2, 68–71, 79–80, 103, 212
�2 norm, 216
�1 norm, 219

additive, 12, 86–90, 104
additivity, 282, 283
adjusted R2, 78, 205, 206,

210–213
Advertising data set, 15, 16,

20, 59, 61–63, 68, 69,
71–76, 79, 81, 82, 87,
88, 102–104

agglomerative clustering, 390
Akaike information criterion, 78,

205, 206, 210–213
alternative hypothesis, 67
analysis of variance, 290
area under the curve, 147
argument, 42
AUC, 147
Auto data set, 14, 48, 49, 56,

90–93, 121, 122, 171,
176–178, 180, 182, 191,
193–195, 299, 371

backfitting, 284, 300
backward stepwise selection, 79,

208–209, 247
bagging, 12, 26, 303, 316–319,

328–330
baseline, 86
basis function, 270, 273
Bayes

classifier, 37–40, 139
decision boundary, 140
error, 37–40

Bayes’ theorem, 138, 139, 226
Bayesian, 226–227
Bayesian information criterion,

78, 205, 206, 210–213
best subset selection, 205, 221,

244–247
bias, 33–36, 65, 82
bias-variance

decomposition, 34
trade-off, 33–37, 42, 105,

149, 217, 230, 239, 243,
278, 307, 347, 357

binary, 28, 130
biplot, 377, 378

G. James et al., An Introduction to Statistical Learning: with Applications in R,
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7,
© Springer Science+Business Media New York 2013

419

420 Index

Boolean, 159

boosting, 12, 25, 26, 303, 316,
321–324, 330–331

bootstrap, 12, 175, 187–190, 316

Boston data set, 14, 56, 110,
113, 126, 173, 201, 264,
299, 327, 328, 330, 333

bottom-up clustering, 390

boxplot, 50

branch, 305

Caravan data set, 14, 165, 335

Carseats data set, 14, 117, 123,
324, 333

categorical, 3, 28

classification, 3, 12, 28–29,
37–42, 127–173,
337–353

error rate, 311

tree, 311–314, 324–327

classifier, 127

cluster analysis, 26–28

clustering, 4, 26–28, 385–401

K-means, 12, 386–389

agglomerative, 390

bottom-up, 390

hierarchical, 386, 390–401

coefficient, 61

College data set, 14, 54, 263,
300

collinearity, 99–103

conditional probability, 37

confidence interval, 66–67, 81,
82, 103, 268

confounding, 136

confusion matrix, 145, 158

continuous, 3

contour plot, 46

contrast, 86

correlation, 70, 74, 396

Credit data set, 83, 84, 86, 89,
90, 99–102

cross-entropy, 311–312, 332

cross-validation, 12, 33, 36,
175–186, 205, 227,
248–251

k-fold, 181–184
leave-one-out, 178–181

curse of dimensionality, 108, 168,
242–243

data frame, 48
Data sets

Advertising, 15, 16, 20, 59,
61–63, 68, 69, 71–76,
79, 81, 82, 87, 88,
102–104

Auto, 14, 48, 49, 56, 90–93,
121, 122, 171, 176–178,
180, 182, 191, 193–195,
299, 371

Boston, 14, 56, 110, 113,
126, 173, 201, 264, 299,
327, 328, 330, 333

Caravan, 14, 165, 335
Carseats, 14, 117, 123, 324,

333
College, 14, 54, 263, 300
Credit, 83, 84, 86, 89, 90,

99–102
Default, 14, 128–137,

144–148, 198, 199
Heart, 312, 313, 317–320,

354, 355
Hitters, 14, 244, 251, 255,

256, 304, 305, 310, 311,
334

Income, 16–18, 22–24
Khan, 14, 366
NCI60, 4, 5, 14, 407,

409–412
OJ, 14, 334, 371
Portfolio, 14, 194
Smarket, 3, 14, 154, 161,

163, 171
USArrests, 14, 377, 378,

381–383

Index 421

Wage, 1, 2, 9, 10, 14, 267,
269, 271, 272, 274–277,
280, 281, 283, 284, 286,
287, 299

Weekly, 14, 171, 200
decision tree, 12, 303–316
Default data set, 14, 128–137,

144–148, 198, 199
degrees of freedom, 32, 241, 271,

272, 278
dendrogram, 386, 390–396
density function, 138
dependent variable, 15
derivative, 272, 278
deviance, 206
dimension reduction, 204,

228–238
discriminant function, 141
dissimilarity, 396–398
distance

correlation-based, 396–398,
416

Euclidean, 379, 387, 388,
394, 396–398

double-exponential distribution,
227

dummy variable, 82–86, 130,
134, 269

effective degrees of freedom, 278
elbow, 409
error

irreducible, 18, 32
rate, 37
reducible, 18
term, 16

Euclidean distance, 379, 387,
388, 394, 396–398, 416

expected value, 19
exploratory data analysis, 374

F-statistic, 75
factor, 84
false discovery proportion, 147
false negative, 147

false positive, 147
false positive rate, 147, 149, 354
feature, 15
feature selection, 204
Fisher’s linear discriminant, 141
fit, 21
fitted value, 93
flexible, 22
for loop, 193
forward stepwise selection, 78,

207–208, 247
function, 42

Gaussian (normal) distribution,
138, 139, 142–143

generalized additive model, 6,
26, 265, 266, 282–287,
294

generalized linear model, 6, 156,
192

Gini index, 311–312, 319, 332

Heart data set, 312, 313,
317–320, 354, 355

heatmap, 47
M sticity, 95
heteroscedasticity, 95–96
hierarchical clustering, 390–396

dendrogram, 390–394
inversion, 395
linkage, 394–396

hierarchical principle, 89
high-dimensional, 78, 208, 239
hinge loss, 357
histogram, 50
Hitters data set, 14, 244, 251,

255, 256, 304, 305, 310,
311, 334

hold-out set, 176
hyperplane, 338–343
hypothesis test, 67–68, 75, 95

Income data set, 16–18, 22–24
independent variable, 15
indicator function, 268

422 Index

inference, 17, 19
inner product, 351
input variable, 15
integral, 278
interaction, 60, 81, 87–90, 104,

286
intercept, 61, 63
interpretability, 203
inversion, 395
irreducible error, 18, 39, 82, 103

K-means clustering, 12, 386–389
K-nearest neighbors

classifier, 12, 38–40, 127
regression, 104–109

kernel, 350–353, 356, 367
linear, 352
non-linear, 349–353
polynomial, 352, 354
radial, 352–354, 363

kernel trick, 351
Khan data set, 14, 366
knot, 266, 271, 273–275

Laplace distribution, 227
lasso, 12, 25, 219–227, 241–242,

309, 357
leaf, 305, 391
least squares, 6, 21, 61–63, 133,

203
line, 63
weighted, 96

level, 84
leverage, 97–99
likelihood function, 133
linear, 2, 86
linear combination, 121, 204,

229, 375
linear discriminant analysis, 6,

12, 127, 130, 138–147,
348, 354

linear kernel, 352
linear model, 20, 21, 59
linear regression, 6, 12

multiple, 71–82

simple, 61–71
linkage, 394–396, 410

average, 394–396
centroid, 394–396
complete, 391, 394–396
single, 394–396

local regression, 266, 294
logistic

function, 132
logistic regression, 6, 12, 26, 127,

131–137, 286–287, 349,
356–357

multiple, 135–137
logit, 132, 286, 291
loss function, 277, 357
low-dimensional, 238

main effects, 88, 89
majority vote, 317
Mallow’s Cp, 78, 205, 206,

210–213
margin, 341, 357
matrix multiplication, 12
maximal margin

classifier, 337–343
hyperplane, 341

maximum likelihood, 132–133,
135

mean squared error, 29
misclassification error, 37
missing data, 49
mixed selection, 79
model assessment, 175
model selection, 175
M collinearity, 101
multicollinearity, 243
multivariate Gaussian, 142–143
multivariate normal, 142–143

natural spline, 274, 278, 293
NCI60 data set, 4, 5, 14, 407,

409–412
negative predictive value, 147,

149
node

Index 423

internal, 305
purity, 311–312
terminal, 305

noise, 22, 228
non-linear, 2, 12, 265–301

decision boundary, 349–353
kernel, 349–353

non-parametric, 21, 23–24,
104–109, 168

normal (Gaussian) distribution,
138, 139, 142–143

null, 145
hypothesis, 67
model, 78, 205, 220

odds, 132, 170
OJ data set, 14, 334, 371
one-standard-error rule, 214
one-versus-all, 356
one-versus-one, 355
optimal separating hyperplane,

341
optimism of training error, 32
ordered categorical variable, 292
orthogonal, 233, 377

basis, 288
out-of-bag, 317–318
outlier, 96–97
output variable, 15
overfitting, 22, 24, 26, 32, 80,

144, 207, 341

p-value, 67–68, 73
parameter, 61
parametric, 21–23, 104–109
partial least squares, 12, 230,

237–238, 258, 259
path algorithm, 224
perpendicular, 233
polynomial

kernel, 352, 354
regression, 90–92, 265–268,

271
population regression line, 63
Portfolio data set, 14, 194

positive predictive value, 147,
149

posterior
distribution, 226
mode, 226
probability, 139

power, 101, 147
precision, 147
prediction, 17

interval, 82, 103
predictor, 15
principal components, 375

analysis, 12, 230–236,
374–385

loading vector, 375, 376
proportion of variance

explained, 382–384, 408
regression, 12, 230–236,

256–257, 374–375, 385
score vector, 376
scree plot, 383–384

prior
distribution, 226
probability, 138

projection, 204
pruning, 307–309

cost complexity, 307–309
weakest link, 307–309

quadratic, 91
quadratic discriminant analysis,

4, 149–150
qualitative, 3, 28, 127, 176

variable, 82–86
quantitative, 3, 28, 127, 176

R functions
x2, 125
abline(), 112, 122, 301,

412
anova(), 116, 290, 291
apply(), 250, 401
as.dist(), 407
as.factor(), 50
attach(), 50

424 Index

biplot(), 403
boot(), 194–196, 199
bs(), 293, 300
c(), 43
cbind(), 164, 289
coef(), 111, 157, 247, 251
confint(), 111
contour(), 46
contrasts(), 118, 157
cor(), 44, 122, 155, 416
cumsum(), 404
cut(), 292
cutree(), 406
cv.glm(), 192, 193, 199
cv.glmnet(), 254
cv.tree(), 326, 328, 334
data.frame(), 171, 201,

262, 324
dev.off(), 46
dim(), 48, 49
dist(), 406, 416
fix(), 48, 54
for(), 193
gam(), 284, 294, 296
gbm(), 330
glm(), 156, 161, 192, 199,

291
glmnet(), 251, 253–255
hatvalues(), 113
hclust(), 406, 407
hist(), 50, 55
I(), 115, 289, 291, 296
identify(), 50
ifelse(), 324
image(), 46
importance(), 330, 333,

334
is.na(), 244
jitter(), 292
jpeg(), 46
kmeans(), 404, 405
knn(), 163, 164
lda(), 161, 163
legend(), 125
length(), 43

library(), 109, 110
lines(), 112
lm(), 110, 112, 113, 115,

116, 121, 122, 156, 161,
191, 192, 254, 256, 288,
294, 324

lo(), 296
loadhistory(), 51
loess(), 294
ls(), 43
matrix(), 44
mean(), 45, 158, 191, 401
median(), 171
model.matrix(), 251
na.omit(), 49, 244
names(), 49, 111
ns(), 293
pairs(), 50, 55
par(), 112, 289
pcr(), 256, 258
pdf(), 46
persp(), 47
plot(), 45, 46, 49, 55, 112,

122, 246, 295, 325, 360,
371, 406, 408

plot.gam(), 295
plot.svm(), 360
plsr(), 258
points(), 246
poly(), 116, 191, 288–290,

299
prcomp(), 402, 403, 416
predict(), 111, 157,

161–163, 191, 249, 250,
252, 253, 289, 291, 292,
296, 325, 327, 361, 364,
365

print(), 172
prune.misclass(), 327
prune.tree(), 328
q(), 51
qda(), 163
quantile(), 201
rainbow(), 408
randomForest(), 329

Index 425

range(), 56
read.csv(), 49, 54, 418
read.table(), 48, 49
regsubsets(), 244–249, 262
residuals(), 112
return(), 172
rm(), 43
rnorm(), 44, 45, 124, 262,

417
rstudent(), 112
runif(), 417
s(), 294
sample(), 191, 194, 414
savehistory(), 51
scale(), 165, 406, 417
sd(), 45
seq(), 46
set.seed(), 45, 191, 405
smooth.spline(), 293, 294
sqrt(), 44, 45
sum(), 244
summary(), 51, 55, 113, 121,

122, 157, 196, 199, 244,
245, 256, 257, 295, 324,
325, 328, 330, 334, 360,
361, 363, 372, 408

svm(), 359–363, 365, 366
table(), 158, 417
text(), 325
title(), 289
tree(), 304, 324
tune(), 361, 364, 372
update(), 114
var(), 45
varImpPlot(), 330
vif(), 114
which.max(), 113, 246
which.min(), 246
write.table(), 48

radial kernel, 352–354, 363
random forest, 12, 303, 316,

320–321, 328–330
recall, 147
receiver operating characteristic

(ROC), 147, 354–355

recursive binary splitting, 306,
309, 311

reducible error, 18, 81
regression, 3, 12, 28–29

local, 265, 266, 280–282
piecewise polynomial, 271
polynomial, 265–268,

276–277
spline, 266, 270, 293
tree, 304–311, 327–328

regularization, 204, 215
replacement, 189
resampling, 175–190
residual, 62, 72

plot, 92
standard error, 66, 68–69,

79–80, 102
studentized, 97
sum of squares, 62, 70, 72

residuals, 239, 322
response, 15
ridge regression, 12, 215–219,

357
robust, 345, 348, 400
ROC curve, 147, 354–355
rug plot, 292

scale equivariant, 217
scatterplot, 49
scatterplot matrix, 50
scree plot, 383–384, 409

elbow, 384
seed, 191
semi-supervised learning, 28
sensitivity, 145, 147
separating hyperplane, 338–343
shrinkage, 204, 215

penalty, 215
signal, 228
slack variable, 346
slope, 61, 63
Smarket data set, 3, 14, 154,

161, 163, 171
smoother, 286

426 Index

smoothing spline, 266, 277–280,
293

soft margin classifier, 343–345
soft-thresholding, 225
sparse, 219, 228
sparsity, 219
specificity, 145, 147, 148
spline, 265, 271–280

cubic, 273
linear, 273
natural, 274, 278
regression, 266, 271–277
smoothing, 31, 266, 277–280
thin-plate, 23

standard error, 65, 93
standardize, 165
statistical model, 1
step function, 105, 265, 268–270
stepwise model selection, 12,

205, 207
stump, 323
subset selection, 204–214
subtree, 308
supervised learning, 26–28, 237
support vector, 342, 347, 357

classifier, 337, 343–349
machine, 12, 26, 349–359
regression, 358

synergy, 60, 81, 87–90, 104
systematic, 16

t-distribution, 67, 153
t-statistic, 67
test

error, 37, 40, 158
MSE, 29–34
observations, 30
set, 32

time series, 94
total sum of squares, 70
tracking, 94
train, 21
training

data, 21
error, 37, 40, 158

MSE, 29–33
tree, 303–316
tree-based method, 303
true negative, 147
true positive, 147
true positive rate, 147, 149, 354
truncated power basis, 273
tuning parameter, 215
Type I error, 147
Type II error, 147

unsupervised learning, 26–28,
230, 237, 373–413

USArrests data set, 14, 377,
378, 381–383

validation set, 176
approach, 176–178

variable, 15
dependent, 15
dummy, 82–86, 89–90
importance, 319, 330
independent, 15
indicator, 37
input, 15
output, 15
qualitative, 82–86, 89–90
selection, 78, 204, 219

variance, 19, 33–36
inflation factor, 101–103,

114
varying coefficient model, 282
vector, 43

Wage data set, 1, 2, 9, 10, 14,
267, 269, 271, 272,
274–277, 280, 281, 283,
284, 286, 287, 299

weakest link pruning, 308
Weekly data set, 14, 171, 200
weighted least squares, 96, 282
within class covariance, 143
workspace, 51
wrapper, 289

