Joseph Teran, UCLA

Title: Elastoplasticity Simulation with the Material Point Method

Abstract: Hyperelastic constitutive models describe a wide range of materials. Examples include biomechanical soft tissues like muscle, tendon, skin etc. Elastoplastic materials consisting of a hyperelastic constitutive model combined with a notion of stress constraint (or feasible stress region) describe an even wider range of materials. In these models, the elastic potential energy only increases with the elastic part of the deformation decomposition. The evolution of the plastic part is designed to satisfy the stress constraint. A very interesting class of these models arise from frictional contact considerations. I will discuss some of the mathematical aspects of these models and present some recent results and examples in computer graphics and virtual surgery applications. I will also talk about practical simulation of these materials with recent novel Material Point Methods (MPM).