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The tools of zero biasing are adapted to yield a general result suitable for analysing the behaviour
of certain growth processes. The main theorem is applied to prove a central limit theorem, with
explicit error terms in the L' metric, for a natural statistic of the Jack measure on partitions.

1. Introduction

Zero biasing for the normal approximation of a random variable W using Stein’s method was
introduced in Goldstein and Reinert [16]. One instance in which the zero bias method may be
applied is for W for which a Stein pair W, W' may be constructed, that is, for W that may be
coupled to a variable W' such that W, W’ is exchangeable and satisfies E(W'|W) = (1 — a)W
for some a € (0, 1]. After giving a brief review of these methods in Section 2, in Section 3 we
provide a general result allowing one to apply zero biasing when the statistic W of interest is
formed by certain growth processes and can be coupled in a Stein pair.

Section 4 studies a certain statistic W, under the Jack, measure on partitions. We defer precise
definitions to Section 4, but for now mention that it is of interest to study statistical properties of
the Jack, measure. The case « = 1 corresponds to the actively studied Plancherel measure of the
symmetric group. The surveys [1], [5] and [25] and the seminal papers [2], [20] and [24] indicate
how the Plancherel measure of the symmetric group is a discrete analogue of random matrix
theory, and describe its importance in representation theory and geometry. Okounkov [25] notes
that the study of the Jack, measure is an important open problem, about which relatively little is
known. It is a discrete analogue of Dyson’s § ensembles from random matrix theory [3].

The particular statistic W, under the Jack measure which we study is of interest for several
reasons. When o = 1 it reduces to the character ratio of transpositions under the Plancherel

T Partially supported by National Science Foundation grant DMS 0802082 and National Security Agency grant H98230-
08-1-0133.
¥ Partially supported by National Security Agency grant H98230-11-1-0162.



754 J. Fulman and L. Goldstein

measure, or equivalently to the spectrum of the random transposition walk. Also, by Corollary 1

of [6], there is a natural random walk on perfect matchings of the complete graph on n vertices,
W(4)

n(n—1)’°
measure of 4. The proofs to date of the central limit theorem for W, range from combinatorial

ones using the method of moments in [21], [17] and [28], and the use of Stein’s method, which
produces an error term (but with no explicit constant) in the Kolmogorov metric [7, 8, 27]. Our
contribution is to prove a central limit theorem in the L' metric, with a small explicit constant.
To close the Introduction we mention that the tools of Section 3 are also useful for studying a
growth process arising from the Pélya—Eggenberger urn model. More precisely, imagine an urn
U, p containing A white balls and B black balls. At each time step one ball is drawn, and returned
to the urn along with m balls of the same colour. The eprint [11] contains details for obtaining a
central limit theorem with explicit error term for the number of white balls drawn after n steps.

whose eigenvalues are precisely occurring with multiplicity proportional to the Jack,

2. Stein’s method and zero biasing

Stein’s lemma [29] states that a random variable Z has the mean zero normal distribution N (0, 0'2)
if and only if

o’Ef'(Z) =E[Zf(Z)] 2.1

for all absolutely continuous functions f for which these expectations exist. Motivated by this
characterization, for a mean zero, variance o2 random variable W and a given function h on
which to test the difference between Eh(W) and Nh = Eh(Z), Stein [29] considered the differ-
ential equation

o’ f'(w) — wf(w) = h(w) — Nh. (2.2)

For the unique bounded solution & of (2.2), one can evaluate the required difference by substitut-
ing W for w and taking expectation, to yield

Eh(W) — Nh = E[a*f (W) — Wf(W)].

Though it may not be immediately clear why the right-hand side may be simpler to evaluate than
the left, a variety of techniques have been developed to handle various situations. For instance,
the exchangeable pair technique, from [30], handles the expectation of the right-hand side when
the given random variable W can be coupled to W’ so that (W, W) is an a-Stein pair, that is, an
exchangeable pair that satisfies

E(W'|W)=(1—a)W forsomea € (0,1]. (2.3)

Other techniques for handling the Stein equation are discussed in detail in [4] and in the refer-
ences therein, but of particular relevance here is the zero bias coupling, which we now review.

Though the mean zero normal is the unique distribution satisfying (2.1), one can ask whether
a given variable satisfies a like identity of its own. Indeed, it is shown in [16] that for every mean
zero, variance o2 random variable X, there exists a distribution for a random variable X*, termed
the X -zero biased distribution, such that

o’Ef (X") = E[Xf(X)] 24
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for all absolutely continuous functions f for which these expectations exist. The mapping of
L(X), the distribution of X, to £(X ™), is known as the zero bias transformation. In particular,
Stein’s lemma (2.1) can be rephrased as the statement that the mean zero normal N(0, 62) is the
unique fixed point of the zero bias transformation characterized by (2.4).

Heuristically, then, if the transformation has a fixed point at the mean zero normal, then an
approximate fixed point should be approximately normal. This heuristic has been made precise
for a variety of examples in [16], [12], [13], [14] and [15] (see also [4]) in order to yield bounds
in both the Kolmogorov and L! metric. For the latter, the following result from [15] is often
useful; we use || - ||; to denote the L' metric.

Theorem 2.1. [f the mean zero, variance 1 random variable W can be coupled to W* having
the W -zero bias distribution, then

IL(W) = L(Z)|1 < 2E[W" — W],

where Z is a standard normal variable.

Hence, to obtain L' bounds, the question reduces to finding a way to couple W and W*.
Lemma 2.2 below, from [16], noting here that the result holds also for a = 1, shows how the
construction of a variable W* with the W -zero bias distribution can be achieved with the help of
the distribution dF(w, w’) of a Stein pair. First, it can easily be shown from (2.3) that if W, W’ is
an a-Stein pair possessing second moments, then

EW =0 and E(W' — W)? = 2aVar(W), (2.5)
so in particular,

(v —w)?

dFT(w,w') = 5

dF(w,w") (2.6)

is a bivariate distribution.

Lemma 2.2. If Wi, W* have distribution (2.6), where F(w,w') is the joint distribution of an
a-Stein pair, and U is a uniformly distributed variable, independent of W1, W?, then

W =UW'+(1-U)wt

has the W -zero bias distribution.

In particular, if W and WT, W¥ can be constructed on a common space, then W and W* can
be also.

We remark that a number of results are available when (W, W') is only an approximate Stein
pair, that is, an exchangeable pair that satisfies the linearity condition (2.3) with a remainder: see,
for instance, [26], and [4]. Correspondingly, here we expect the conclusions of Theorems 2.1
and 3.1 to hold for approximate Stein pairs by including in the bounds the additional terms that
arise from such remainders.

In what follows we study processes for which the random variable W of interest can be written
as the sum V + T, where V = V7, a function of a variable t determined by the process run to
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a penultimate state, and T a function of running the process for one additional step. In our
examples, given a state 7 that determines V, a Stein pair (W, W') = (V + T,V + T’) can be
constructed by running two copies of the last step of a chain, forming T and T’ conditionally
independent given .

In such cases the equality W — W = T’ — T provides a factored representation of the joint
distribution (2.6) that implies that the required pair (W, W*) of random variables can be con-
structed by forming (V° + T.5, V? + TE), where V° is a function of a state t having the
distribution of t biased in a particular way, and (TJD, TITD) is obtained by square biasing the
conditional distributions of T and T’ given t” in a way similar to (2.6). By Lemma 2.2 we
thereby obtain that

W*=VZ+T", where T =UThL +(1—U)TE,

has the W -zero biased distribution.

Our application of Theorem 3.1 to the Jack measure is particularly simple since the biasing
factor to form the ¢ distribution from that of 7 is unity, and we may therefore take V = V" For
the Pélya—Eggenberger urn example, discussed in [11], it is shown that biasing draws from the
urn Uy p in our process results in the urn Uy m g+m-

3. General result

The purpose of this section is to prove the following theorem.

Theorem 3.1. Consider a bivariate distribution L(t, T) on a random object T and random
variable T, and a t-measurable random variable V. = V. such that sampling t, and then, given 1,
sampling T and T’ independently from the conditional distribution L(T |t), the random variables

W=V+T and W =V+T 3.1
have variance one and are an a-Stein pair. Denoting
E(T|t) = u: and E(T — p)’lt) = o7, (32)

and the distribution of © by dF(t), the measure F"(t) specified by

o2
dF° (1) = de(r) (3.3)
is a probability measure, and for any coupling of © to ©° with distribution (3.3), we have
EIT — .l
H'C(W) - 'C(Z)Hl < 2E‘(VTD - V) + (:ur‘:‘ - ,u‘c)| + 2E|T - ,ur| + o (3.4
Var(T — i)
When pi, equals zero and 6? is constant almost surely, then
E|T?
|LOW) — L) < 2B/T| + ] (3.5)

Var(T)
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Proof. First consider the case where u, = 0 a.s. Since, conditional on t, the pair T and T’ are
independent, we have E[T’'T|t] = E[T’|t]E[T|t] = 0, and therefore, from (3.1) and (3.2),

E(W' — W)*|t) = E(T' — T)*|1) = 202 (3.6)
Taking expectation and applying (2.5), we have that
Eo? = a, (3.7

verifying that dF”(z) is a probability measure.
By construction, the joint distribution of (T, T’, 7) is, with some abuse of notation, given by

dF(t,t',t) = dF(f'|t)dF(t|t)dF(t),
and therefore the pair (W, W') has distribution
dF(w,w') = / dF(f'|7)dF(t|t)dF(7), (3.8)
T Lt wtt=wot'=w
where v = V. By Lemma 2.2, with U an independent uniform random variable on [0, 1],
wr=Uw'+1-u)wt
has the W -zero bias distribution when (W T, W) has distribution given by

(W/ — W)z ’

For any fixed 7 let F(t|t) denote the conditional distribution of T given 7. By (3.6), for every
7 the measure

dFf(w,w') =

(t' —1)?

dFi(t,t') = ~—~——dF({'|t)dF(t|7) (3.9)
202
is a bivariate probability distribution.
Now, using (3.8), (3.7) and (3.9),
I )2
dFfw,wy = =W / dF (¢ |2)dF (t|7)dF(z)
2a Tt wHt=wo+t'=w

EWAY)
= / O =W IR o) dF (t0)dF (7)
Tt wt=w,o+t'=w’ 2a

2 t —t 2
= / 7 ( 2) dF (¢ |7)dF (t|7)dF(z)
Tt wt=w,o+t'=w’ a 261

V) 2
- / ( / il dF(t’|r)dF(tr)> % 4F(x)
T tt w+t=wp+t'=w’ 261 a

- / ( / dFi(t, t))dFD(r). 3.10)
T tt wt=w,o+t'=n’

The factorization in the integral indicates that, given t= with distribution dF"(z), the pair
(W1, W) can be generated by sampling TTTD , Tfm from dFTTD (', t), and then setting

Wi=Veo+ThL and W'=Vso+Th,
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where V.o is the value of V on t". In particular, letting
T =UTL +(1—U)TE, (3.11)
we have that
W'=UVe +TE)+(1—U)(Vie + TE) = Vo + T

has the W -zero biased distribution.

For a fixed 1, let T; and T denote independent copies of a random variable with distribution
dF(t|t). Clearly T, and T, are exchangeable, and as p, =0, we have E(T) = E(E(T|1)) =
Eu, = 0 and therefore E(T’|T) = E(T’) = 0. Hence (T, T') is a 1-Stein pair. In view of (3.9),
Lemma 2.2 yields that when T, T} have distribution F](t,t') and U is an independent uniform
random variable,

T, =UT/ +(1-U)T} (3.12)

has the T,-zero biased distribution.
As E(T) = 0, by (3.7) we obtain

a =Ro? = E(E(T?|7)) = E(T?) = Var(T).

Comparing (3.11) and (3.12), we see that the distribution £(T* ) is the mixture of the dis-
tributions £(T;) with mixing measure o2/ Var(T), by (3.10). Therefore, by Theorem 2.1 of
[14], T™ has the T-zero bias distribution. Applying the zero bias identity (2.4) with f(x) =
(1/2)x?sign(x), we have
o E|T?|
EIT" | = ———.
| | 2Var(T)

Now, with 7 and " the given coupling, letting V' = V, and T be sampled from £(T |t), setting
W,W=WV+T,VE + TTD) yields a coupling of W and W* on the same space, satisfying
EW' —W|=E|Veo —V+T" —T|
<E|Ve — V| +E|T| +E|T"|

E|T?|
=E|Vio —V|+E|T|+ ——+.
| |+ El |—}_ZVar(T)

Theorem 2.1 now yields

E|T3|
Var(T)

1L(W)—L(Z)|1 <2E|Vie —V|+2E|T|+ (3.13)

When ¢? is constant we have that dF”(t) = dF(t), and hence may let t¥ = 1; taking V,o = V
in (3.13) now yields (3.5).
To obtain the result for general p;, we reduce to the case y, = 0 by writing

W W)=WV+T.V+T)=(V+pu) +(T — p),(V + o) + (T" — o))

Replacing V' and T in (3.13) by V' 4+ p; and T — p., respectively, yields (3.4). ]
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4. The Jack measure

In this section we apply Theorem 3.1 to study a property of the Jack, measure on the set of
partitions of size n. For & > 0 the Jack, measure chooses a partition 4 of size n with probability

o"n!

Jack, (1) = [Le; (ea(x) + 1(x) + D)(ea(x) + 1(x) + o)’

“.1)

where in the product over all boxes x in the partition 4, a(x) denotes the number of boxes in the
same row of x and to the right of x (the ‘arm’ of x), and /(x) denotes the number of boxes in the
same column of x and below x (the ‘leg’ of x). For example, one calculates that the partition

;=000
00

of 5 has Jack, measure

Tack (1) — 600>
) = B T 2)Ba D + D@+ Dot 1)

With 4 having the Jack, distribution, we apply the theory of Section 3 to prove an explicit L;
normal approximation bound for the statistic

Wa()v) _ er). C“(x),
V()
where c,(x) denotes the ‘a-content’ of x, defined as

¢,(x) = a(column number of x — 1) — (row number of x — 1).

In the diagram below, representing a partition of 7, each box is filled with its o-content:

0 o ’20( H3oc‘
-1 ||a—1
—2

In the Kolmogorov metric, the paper [7] proved an O(n~!/4) error term for the normal approx-
imation of W,; this rate was sharpened in [10] using martingales to O(n~!/2+€) for any € > 0
and in [9] to O(n~!/?) using Bolthausen’s inductive approach to Stein’s method, but without an
explicit constant. Hora and Obata [18] prove a central limit theorem, with no error term, for W,
using quantum probability. Here we give an explicit L; bound to the normal with small constants.

To obtain our bound we construct an exchangeable pair using Kerov’s growth process for
generating a random partition distributed according to the Jack, measure. Given a box x in the
diagram of A, again letting a(x) and [(x) denote the arm and leg of x respectively, set

ci(@) = [J(ea(x) +1(x) + 1), ¢j(@) = [J(xa(x) + I(x) + 2)
xei x€ei
and, for 7 a partition obtained from A by removing a single corner box,

H (2a;(x) + [;(x) + 1) (2ac(x) + L(x) + )
(e (x) + Li(x) + o) (oac(x) + (x) + 1)

w;/f(a) =
x€Cy/—Ry
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where C;, is the union of columns of 4 that intersect 4 — 7 and R;, is the union of rows of 1
that intersect 4 — 7.

The state of Kerov’s growth process at times n = 1,2,... is a partition of size n, starting at
time one with the unique partition of 1. If at stage n — 1 the state of the process is the partition 7,
a transition to the partition A occurs with probability

),
As shown in [22] and [10], if 7 is chosen from the Jack, measure on partitions of size n — 1, then
transitioning according to this rule results in a partition 4 of n distributed according to the Jack,
measure.

We now present an L! bound for the normal approximation of W,.

Theorem 4.1. Let

er/l C“(x)
()

and let W, be the value of W,(A) when A has the Jack, measure distribution for some o > 0.

Then, for Z a standard normal random variable,

W,()) = 4.2)

2
|£(Wa)—£(Z>|1<\/;(2+ LY @3)

Proof. First we show that (4.3) holds for all & > 1. Constructing 7 from the Jack measure on
partitions of size n — 1 and then taking one step in Kerov’s growth process yields / with the Jack
measure on partitions of size n, and we may write

max(a, 1/a) )

W,=V+T,

where

and c¢,(4/7) denotes the o-content of the box added to 7 to form A.

It is shown in [7] that constructing A’ by taking another step in Kerov’s growth process from
7, independently of 1/t given 7, and then forming W, from A’ as W is formed from /, results in
exchangeable variables W,, W, that satisfy (2.3) with a = 2/n. Hence, (3.1) of Theorem 3.1 is
satisfied. Corollary 5.3 of [7] gives that Var(W) = 1.

From Section 3 of [9], one recalls the following three facts:
(1) E[T|z] =0 for all 7,
(2 E[T?7] = 2 forall 7,
3)E[T*] = ‘“2(”*“‘“"f(‘,’f)é”““z("?).
2

As V is measurable with respect to the g-algebra generated by 7, condition (3.2) is satisfied.
From properties (1) and (2) above we have, respectively, that i, = 0 and o2 is a constant, almost
surely. Hence the bound (3.5) of Theorem 3.1 holds.
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Applying the Cauchy—Schwarz inequality gives that E|T| < /ET?2 = /2/n, accounting for
the first term in the bound. From property (3), now applying « > 1, we have

n n—1
E[T*] < [(2) +n32( 2 )} =D 8y 247“_1.
() 37 v me=D
The Cauchy—Schwarz inequality gives that E|T3| < v/E[T2]E[T¥], and properties (1) and (2)
give Var(T) = 2/n, yielding the final term in the bound (4.3). Thus the result is shown when
o> 1.
To obtain a bound for all & > 0, note first that when taking the transpose A’ of a partition A the
roles of the arms a(x) and legs [(x) become interchanged; hence, letting 1, be a partition with
the Jack, distribution, from (4.1), for all & > 0 we have

L(1o) = L(21),)-
Next, as Wy () = =W ,(A') for all A, and L(Z) = L(—Z),

IL(Wi(2e)) — L(Z)||1 = [ L(=W1,4(23)) — L(Z) 1
= |L(=W1u(d1/)) — L(=Z) 1
= | L(Wi/5(A1/5)) — L(Z)]];.

Hence, as the bound (4.3) holds for all « > 1, it holds for all o > 0. L]
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