Outline

1. Dimensionality reduction
 - Curve of dimensionality

2. Principal component analysis
Dimensionality reduction

Motivation Given data that are high-dimensional $\mathbf{x} \in \mathbb{R}^D$, we want to find a low-dimensional representation $\mathbf{y} \in \mathbb{R}^M$ such that $M < D$:

- Visualize data and discover intrinsic structures
- Save computational and storage cost
- Robust statistical modeling: curse of dimensionality
Curse of dimensionality

Intuition The higher the dimensionality, the more data points we need to train a model.

- To fill a unit-cube in \mathbb{R}^D uniformly with data points, we need r^D where r is the edge length of small cells (i.e., dividing each axis in equal size of r.)
 Thus, if data is distributed that way, models such as decision trees need r^D training samples in order to make sure every cell is covered — in case a test sample falls into one of those cells.

- For a unit-ball $x \leq 1$, a large percentage of data live in the shell — between the surface $x = 1$ and the surface $x = 1 - \epsilon$. The percentage is

 $$1 - (1 - \epsilon)^D$$

 approaches 1. Thus, most data points in the high-dimensional space are crowded in the shell and are about the same distance from each other.
Curse of dimensionality: more examples

Please check the Wikipedia entry:
Dimensionality reduction

- Linear: the low-dimensional coordinates y is parameterized as
 \[y = U^T x, \]
 where $U \in \mathbb{R}^{M \times D}$

- Nonlinear: the relationship is through a nonlinear mapping
 \[y = f(x) \]

In both categories, there are many methods. We will focus on Principal Component Analysis (PCA) — a linear method for dimensionality reduction.
Outline

1. Dimensionality reduction

2. Principal component analysis
Intuition Consider the special case $M = 1$, namely, we are transforming x into a scalar via

$$y = u^T x$$

which u is sensible?
Derivation of the first principal components

Please check the hand-written note (PCA.pdf)