Outline

1. Administration
2. Review of last lecture
3. Logistic regression
A few announcements

- Homework 1: due 9/24 (see the homework sheets for detailed submission information)
- A lot of goodies on the Discussion Board: please participate or at least browse!
- Typos (corrected versions uploaded already or soon)
 - Lecture 2, slide# 39
 \[
 \sum_{d}(x_d - x_{nd})^p \rightarrow \sum_{d}|x_d - x_{nd}|^p
 \]
 - Lecture 4, slide#19: missing a “+” in eq.(7)
 - Lecture 4, slide#20: missing an extra subscript
 \[
 \sum_{n:y_n=c} \rightarrow \sum_{n:y_n=c,k}
 \]
Outline

1 Administration

2 Review of last lecture
 • Naive Bayes

3 Logistic regression
Naive Bayes

Assume $X \in \mathbb{R}^D$ and all $X_d \in [K]$

$$P(X = x, Y = c) = P(Y = c) \prod_k P(k|Y = c)^{z_k} = \pi_c \prod_k \theta_{ck}^{z_k}$$

where z_k is the number of times k in x.

Key assumption made

- Conditional independence:
 $$P(X_i, X_j|Y = c) = P(X_i|Y = c)P(X_j|Y = c).$$

- $P(X_i|Y = c)$ depends only the value of X_i, not i itself (order of words does not matter in “bag-of-word” representation of documents)
Learning problem

Training data

\[\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N} \rightarrow \mathcal{D} = \{\{\{z_{nk}\}_{k=1}^{K}, y_n\}\}_{n=1}^{N} \]

maximum likelihood estimation

\[\mathcal{L} = \sum_{n} \log \pi_{y_n} + \sum_{n,k} z_{nk} \log \theta_{ynk} \]

\[\pi_{c}^* = \frac{\text{# of data points labeled as } c}{N} \]

\[\theta_{ck}^* = \frac{\sum_{n:y_n=c} z_{nk}}{\sum_{k} \sum_{n:y_n=c} z_{nk}} \]
Given an unlabeled data point $x = \{z_k, k = 1, 2, \cdots, K\}$, label it with

$$y^* = \arg \max_{c \in [C]} P(y = c | x)$$

$$= \arg \max_{c \in [C]} P(y = c) P(x | y = c)$$

$$= \arg \max_{c} \left[\log \pi_c + \sum_k z_k \log \theta_{ck} \right]$$
Moving forward

Examine the classification rule for naive Bayes

\[y^* = \arg \max_c \log \pi_c + \sum \log \theta_{ck} \]

For binary classification problem, this is just to determine the label basing on

\[\log \pi_1 + \sum \log \theta_{1k} - \left(\log \pi_2 + \sum \log \theta_{2k} \right) \]

This is just a linear function of the features \(\{z_k\} \)

\[w_0 + \sum z_k w_k \]

where we “absorb” \(w_0 = \log \pi_1 - \log \pi_2 \) and \(w_k = \log \theta_{1k} - \log \theta_{2k} \).
Naive Bayes is a linear classifier

Fundamentally, what really matters in deciding decision boundary is

$$w_0 + \sum_k z_k w_k$$

Namely, if this quantity is greater than 0, then class 1, else class 2.

The linear form motivates many new methods. One of them is logistic regression.
Outline

1 Administration

2 Review of last lecture

3 Logistic regression
 - General setup
 - Maximum likelihood estimation
 - Numerical optimization
 - Gradient descent
 - Gradient descent for logistic regression
 - Newton method
 - Generative versus discriminative
Logistic regression

Logistic classification

Setup for two classes

- **Input:** $\mathbf{x} \in \mathbb{R}^D$
- **Output:** $y \in \{0, 1\}$
- **Training data:** $\mathcal{D} = \{(\mathbf{x}_n, y_n), n = 1, 2, \ldots, N\}$
- **Model:**

 $$p(y = 1 | \mathbf{x}; b, \mathbf{w}) = \sigma [g(\mathbf{x})]$$

 where

 $$g(\mathbf{x}) = b + \sum_d w_d x_d = b + \mathbf{w}^T \mathbf{x}$$

 and $\sigma[\cdot]$ stands for the **sigmoid** function

 $$\sigma(a) = \frac{1}{1 + e^{-a}}$$
Logistic regression

Why the sigmoid function?

What does it look like?

\[\sigma(a) = \frac{1}{1 + e^{-a}} \]

where

\[a = b + \mathbf{w}^T \mathbf{x} \]
Why the sigmoid function?

What does it look like?

\[\sigma(a) = \frac{1}{1 + e^{-a}} \]

where

\[a = b + \mathbf{w}^T \mathbf{x} \]

Properties

- Bounded between 0 and 1 \(\Leftarrow \) thus, interpretable as probability
- Monotonically increasing \(\Leftarrow \) thus, usable to derive classification rules
 1. \(\sigma(a) > 0.5 \), positive (classify as '1')
 2. \(\sigma(a) < 0.5 \), negative (classify as '0')
 3. \(\sigma(a) = 0.5 \), undecidable
- Nice computationally properties \(\text{These will unfold in the next few slides} \)
Logistic regression

General setup

Linear or nonlinear?

\(\sigma(a) \) is nonlinear, however, the decision boundary is determined by

\[
\sigma(a) = 0.5 \Rightarrow a = 0 \Rightarrow g(x) = b + w^T x = 0
\]

which is a *linear* function in \(x \).

We often call \(b \) the bias term.
Contrast Naive Bayes and our new model

Similar

Both look at the linear function of features for classification

Difference

Naive Bayes models the *joint* distribution

\[P(X, Y) = P(Y)P(X|Y) \]

Logistic regression models the *conditional* distribution

\[P(Y|X) \]
Likelihood function

Probability of a single training sample \((x_n, y_n)\)

\[
p(y_n | x_n; b; w) = \begin{cases}
\sigma(b + w^T x_n) & \text{if } y_n = 1 \\
1 - \sigma(b + w^T x_n) & \text{otherwise}
\end{cases}
\]
Likelihood function

Probability of a single training sample \((x_n, y_n)\)

\[
p(y_n|x_n; b; w) = \begin{cases}
\sigma(b + w^T x_n) & \text{if } y_n = 1 \\
1 - \sigma(b + w^T x_n) & \text{otherwise}
\end{cases}
\]

Compact expression, exploring that \(y_n\) **is either 1 or 0**

\[
p(y_n|x_n; b; w) = \sigma(b + w^T x_n)^{y_n} [1 - \sigma(b + w^T x_n)]^{1-y_n}
\]
Cross-entropy error

Log-likelihood of the whole training data \mathcal{D}

$$\log P(\mathcal{D}) = \sum_n \{ y_n \log \sigma(b + \mathbf{w}^T \mathbf{x}_n) + (1 - y_n) \log[1 - \sigma(b + \mathbf{w}^T \mathbf{x}_n)] \}$$
Logistic regression

Maximum likelihood estimation

Cross-entropy error

Log-likelihood of the whole training data \mathcal{D}

$$\log P(\mathcal{D}) = \sum_{n} \{y_n \log \sigma(b + w^T x_n) + (1 - y_n) \log[1 - \sigma(b + w^T x_n)]\}$$

It is convenient to work with its negation, which is called \textit{cross-entropy error function}

$$\mathcal{E}(b, w) = -\sum_{n} \{y_n \log \sigma(b + w^T x_n) + (1 - y_n) \log[1 - \sigma(b + w^T x_n)]\}$$
Shorthand notation

This is for convenience

- Append 1 to \mathbf{x}
 \[
 \mathbf{x} \leftarrow [1 \ x_1 \ x_2 \ \cdots \ x_D]
 \]
- Append b to \mathbf{w}
 \[
 \mathbf{w} \leftarrow [b \ w_1 \ w_2 \ \cdots \ w_D]
 \]
- Cross-entropy is then
 \[
 \mathcal{E}(\mathbf{w}) = -\sum_n \{y_n \log \sigma(\mathbf{w}^T \mathbf{x}_n) + (1 - y_n) \log[1 - \sigma(\mathbf{w}^T \mathbf{x}_n)]\}
 \]

NB. We are not using the $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{w}}$ (as in several textbooks) for cosmetic reasons.
How to find the optimal parameters for logistic regression?

We will minimize the error function

\[E(w) = -\sum_n \{ y_n \log \sigma(w^T x_n) + (1 - y_n) \log[1 - \sigma(w^T x_n)] \} \]

However, this function is complex and we cannot find the simple solution as we did in Naive Bayes. So we need to use numerical methods.

- Numerical methods are messier, in contrast to cleaner analytic solutions.
- In practice, we often have to tune a few optimization parameters — patience is necessary.
An overview of numerical methods

We describe two

- Gradient descent (our focus in lecture): simple, especially effective for large-scale problems
- Newton method: classical and powerful method

Gradient descent is often referred to as an *first-order* method as it requires only to compute the gradients (i.e., the first-order derivative) of the function.

In contrast, Newton method is often referred as to an *second-order* method.
Example: \(\min f(\theta) = 0.5(\theta_1^2 - \theta_2)^2 + 0.5(\theta_1 - 1)^2 \)

- We compute the gradients
 \[
 \frac{\partial f}{\partial \theta_1} = 2(\theta_1^2 - \theta_2)\theta_1 + \theta_1 - 1 \quad (5)
 \]
 \[
 \frac{\partial f}{\partial \theta_2} = -(\theta_1^2 - \theta_2) \quad (6)
 \]

- Use the following \textit{iterative} procedure for \textit{gradient descent}
 1. Initialize \(\theta_1^{(0)} \) and \(\theta_2^{(0)} \), and \(t = 0 \)
 2. do
 \[
 \theta_1^{(t+1)} \leftarrow \theta_1^{(t)} - \eta \left[2(\theta_1^{(t)})^2 - \theta_2^{(t)} \right] \theta_1^{(t)} + \theta_1^{(t)} - 1 \quad (7)
 \]
 \[
 \theta_2^{(t+1)} \leftarrow \theta_2^{(t)} - \eta \left[-(\theta_1^{(t)})^2 - \theta_2^{(t)} \right] \quad (8)
 \]
 \[
 t \leftarrow t + 1 \quad (9)
 \]
 3. until \(f(\theta^{(t)}) \) does not change much
Gradient descent

General form for minimizing $f(\theta)$

$$\theta^{t+1} \leftarrow \theta - \eta \frac{\partial f}{\partial \theta}$$

Remarks

- η is often called *step size* – literally, how far our update will go along the direction of the negative gradient.
- Note that this is for *minimizing* a function, hence the subtraction ($-\eta$).
- With a *suitable* choice of η, the iterative procedure converges to a stationary point where
 $$\frac{\partial f}{\partial \theta} = 0$$
- A stationary point is only necessary for being the minimum.
Seeing in action

Choose the right η is important

small η is too slow?
Seeing in action

Choose the right η is important

small η is too slow?

large η is too unstable?
How do we do this for logistic regression?

Simple fact: derivatives of $\sigma(a)$

\[
\frac{d \sigma(a)}{d a} = \frac{d}{d a} \left(\frac{1}{1 + e^{-a}} \right) = \frac{-(1 + e^{-a})'}{(1 + e^{-a})^2}
\]
How do we do this for logistic regression?

Simple fact: derivatives of $\sigma(a)$

\[
\frac{d \sigma(a)}{d a} = \frac{d}{d a} \left(\frac{1}{1 + e^{-a}} \right) = \frac{-(1 + e^{-a})'}{(1 + e^{-a})^2}
\]

\[
= \frac{e^a}{(1 + e^{-a})^2} = \frac{1}{1 + e^{-a}} \left(1 - \frac{1}{1 + e^{-a}} \right)
\]
How do we do this for logistic regression?

Simple fact: derivatives of $\sigma(a)$

$$
\frac{d \sigma(a)}{d a} = \frac{d}{d a} \left(\frac{1}{1 + e^{-a}} \right) = \frac{-(1 + e^{-a})'}{(1 + e^{-a})^2} = \frac{e^a}{(1 + e^{-a})^2} = \frac{1}{1 + e^{-a}} \left(1 - \frac{1}{1 + e^{-a}} \right) = \sigma(a)[1 - \sigma(a)]
$$
Gradients of the cross-entropy error function

Gradients

\[\frac{\partial E(w)}{\partial w} = - \sum_n \left\{ y_n [1 - \sigma(w^T x_n)] x_n - (1 - y_n) \sigma(w^T x_n)] x_n \right\} \quad (10) \]

\[= \sum_n \left\{ \sigma(w^T x_n) - y_n \right\} x_n \quad (11) \]

Remarks

- \(e_n = \left\{ \sigma(w^T x_n) - y_n \right\} \) is called error for the \(n \)th training sample.
- Stationary point (in this case, the optimum):

\[\sum_n \sigma(w^T x_n) x_n = \sum_n x_n y_n \]

Intuition: on average, the error is zero.
Numerical optimization

Gradient descent

- Choose a proper step size $\eta > 0$
Numerical optimization

Gradient descent

- Choose a proper step size $\eta > 0$
- Iteratively update the parameters following the negative gradient to minimize the error function

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \sum_n \{ \sigma(\mathbf{w}^T \mathbf{x}_n) - y_n \} \mathbf{x}_n$$

Remarks

- The step size needs to be chosen carefully to ensure convergence.
- The step size can be adaptive (i.e. varying from iteration to iteration). For example, we can use techniques such as line search
- There is a variant called stochastic gradient descent, also popularly used (later in this semester).
Intuition for Newton method

Approximate the true function with an easy-to-solve optimization problem
Approximation

Taylor expansion of the cross-entropy function

\[E(w) \approx E(w^{(t)}) + (w - w^{(t)})^T \nabla E(w^{(t)}) + \frac{1}{2} (w - w^{(t)})^T H^{(t)} (w - w^{(t)}) \]

where

- \(\nabla E(w^{(t)}) \) is the gradient
- \(H^{(t)} \) is the Hessian matrix evaluated at \(w^{(t)} \)

Example: a scalar function

\[\sin(\theta) \approx \sin(0) + \theta \cos(\theta = 0) + \frac{1}{2} \theta^2 [- \sin(\theta = 0)] = \theta \]

where \(\nabla \sin(\theta) = \cos(\theta) \) and \(H = \nabla \cos(\theta) = - \sin(\theta) \)
So what is the Hessian matrix?

The matrix of second-order derivatives

\[H = \frac{\partial^2 \mathcal{E}(w)}{\partial w w^T} \]

In other words,

\[H_{ij} = \frac{\partial}{\partial w_j} \left(\frac{\partial \mathcal{E}(w)}{\partial w_i} \right) \]

So the Hessian matrix is \(\mathbb{R}^{D \times D} \), where \(w \in \mathbb{R}^D \).
Optimizing the approximation

Minimize the approximation

$$\mathcal{E}(w) \approx \mathcal{E}(w^{(t)}) + (w - w^{(t)})^T \nabla \mathcal{E}(w^{(t)}) + \frac{1}{2}(w - w^{(t)})^T H^{(t)}(w - w^{(t)})$$

and use the solution as the new estimate of the parameters

$$w^{(t+1)} \leftarrow \min_w (w - w^{(t)})^T \nabla \mathcal{E}(w^{(t)}) + \frac{1}{2}(w - w^{(t)})^T H^{(t)}(w - w^{(t)})$$
Optimizing the approximation

Minimize the approximation

\[
E(w) \approx E(w^{(t)}) + (w - w^{(t)})^T \nabla E(w^{(t)}) + \frac{1}{2} (w - w^{(t)})^T H^{(t)} (w - w^{(t)})
\]

and use the solution as the new estimate of the parameters

\[
w^{(t+1)} \leftarrow \min_w (w - w^{(t)})^T \nabla E(w^{(t)}) + \frac{1}{2} (w - w^{(t)})^T H^{(t)} (w - w^{(t)})
\]

The quadratic function minimization has a \textit{closed} form, thus, we have

\[
w^{(t+1)} \leftarrow w^{(t)} - \left(H^{(t)} \right)^{-1} \nabla E(w^{(t)})
\]

i.e., the Newton method.
Contrast gradient descent and Newton method

Similar

Both are iterative procedures.

Difference

- Newton method requires second-order derivatives.
- Newton method does not have the magic η to be set.
Other important things about Hessian

Our cross-entropy error function is convex

\[
\frac{\partial E(w)}{\partial w} = \sum_n \{\sigma(w^T x_n) - y_n\} x_n
\]

\[\Rightarrow H = \frac{\partial^2 E(w)}{\partial w^T w} = \text{homework}\]
Other important things about Hessian

Our cross-entropy error function is convex

\[
\frac{\partial E(w)}{\partial w} = \sum_n \{\sigma(w^T x_n) - y_n\} x_n \tag{12}
\]

\[
H = \frac{\partial^2 E(w)}{\partial w\partial w^T} = \text{homework} \tag{13}
\]

For any vector \(v \),

\[
v^T Hv = \text{homework} \geq 0
\]

Thus, positive definite. Thus, the cross-entropy error function is convex, with only one global optimum.
Good about Newton method

Fast!

Suppose we want to minimize $f(x) = x^2 + 2x$ and we have its current estimate at $x^{(t)} \neq -1$. So what is the next estimate?

$$x^{(t+1)} \leftarrow x^{(t)} - [f''(x)]^{-1} f'(x) = x^{(t)} - \frac{1}{2}(2x^{(t)} + 2) = -1$$

Namely, the next step (of iteration) immediately tells us the global optimum! (In optimization, this is called *superlinear convergence rate*).

In general, the better our approximation, the fast the Newton method is in solving our optimization problem.
Bad about Newton method

Not scalable!

- Computing and inverting Hessian matrix can be very expensive for large-scale problems where the dimensionally D is very large.
- Newton method does not guarantee convergence if your starting point is far away from the optimum

NB. There are fixes and alternatives, such as Quasi-Newton/Quasi-second order method.
Generative versus discriminative: two different modeling paradigms

Naive Bayes and logistic regression highlight the differences:

- Setup
 Suppose the training data is from a joint probabilistic model $p(x, y)$
- Differences in specifying models
 - the generative approach requires we specify the model for the joint distribution (such as Naive Bayes), and thus, maximize the \textit{joint} likelihood $\sum_n \log p(x_n, y_n)$
 - the discriminative approach (discriminative) requires only specifying a model for the conditional distribution (such as logistic regression), and thus, maximize the \textit{conditional} likelihood $\sum_n \log p(y_n|x_n)$
Generative versus discriminative: two different modeling paradigms

Naive Bayes and logistic regression highlight the differences:

- **Setup**
 Suppose the training data is from a joint probabilistic model $p(x, y)$

- **Differences in specifying models**
 - the generative approach requires we specify the model for the joint distribution (such as Naive Bayes), and thus, maximize the **joint** likelihood $\sum_n \log p(x_n, y_n)$
 - the discriminative approach (discriminative) requires only specifying a model for the conditional distribution (such as logistic regression), and thus, maximize the **conditional** likelihood $\sum_n \log p(y_n | x_n)$

- **Differences in computation**
 - Sometimes, modeling by discriminative approach is easier
 - Sometimes, parameter estimation by generative approach is easier