Problem 1. Prove or disprove each of the following statements. Namely, either prove that the property always holds, or provide an explicit example where it is false.

a. If \(f : X \to Y \) and \(A, A' \subset X \), then \(f(A \cap A') = f(A) \cap f(A') \).

b. If \(f : X \to Y \) and \(A, A' \subset X \), then \(f(A \cup A') = f(A) \cup f(A') \).

c. If \(f : X \to Y \) and \(B, B' \subset Y \), then \(f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B') \).

d. If \(f : X \to Y \) and \(B, B' \subset Y \), then \(f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B') \).

e. If \(A, B, C \) are sets, then \(A - (B - C) = (A - B) \cup (A \cap C) \).

Problem 2. Let \(\{A_i\}_{i \in I} \) be a family of indexed sets, all contained in the set \(X \). Recall from class that \(\bigcup_{i \in I} A_i = \{x; \exists i \in I, x \in A_i\} \) and \(\bigcap_{i \in I} A_i = \{x; \forall i \in I, x \in A_i\} \).

Prove that \(X - \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X - A_i) \).
Problem 1. Show that \(d(x, y) = (x - y)^2 \) does not define a metric on the set \(\mathbb{R} \) of all real numbers.

Problem 2. For every \(x, y \in X \), define
\[
d(x, y) = \begin{cases}
0 & \text{if } x = y \\
1 & \text{if } x \neq y
\end{cases}
\]
Show that this defines a metric on the set \(X \).

Problem 3. Consider the usual metric \(d(x, y) = |x - y| \) on the set \(\mathbb{R} \) of all real numbers. Give an example of an infinite collection of open sets of \((\mathbb{R}, d) \), whose intersection is not open.

Problem 4. Prove or disprove the following property: If the metric space \((X, d) \) has at least two elements, then it admits an open subset which is neither \(X \) nor the empty set \(\emptyset \).
Problem 1. In the metric space \((X, d)\), let the closed ball of radius \(r\) centered at \(x\) be
\[
\bar{B}(x, r) = \{ y \in X; d(x, y) \leq r \}
\]
Show that the closed ball \(\bar{B}(x, r)\) is a closed subset of \(X\).

Problem 2. Let \(d\) be a metric defined on the set \(X\). Show that the function \(d'\) defined by \(d'(x, y) = \min\{d(x, y), 1\}\) is also a metric on \(X\). (We will occasionally use this metric, which has the nice property that \(d'(x, y) \leq 1\) for every \(x, y\)).

Problem 3. Let \(f : X \to Y\) be a map between the topological spaces \(X\) and \(Y\). A neighborhood of \(x \in X\) is a subset \(W\) of \(X\) that contains an open subset \(U\) containing \(x\) (namely \(x \in U \subset W \subset X\)). Show that \(f\) is continuous if and only if, for every \(x \in X\) and every neighborhood \(V\) of \(f(x)\) in \(Y\), there exists a neighborhood \(U\) of \(x\) in \(X\) such that \(f(U) \subset V\). (A property similar to the \(\varepsilon-\delta\) definition of continuity in metric spaces).

Problem 4. Let \(f : X \to \mathbb{R}\) be a continuous map from a topological space \(X\) to the real line \(\mathbb{R}\), endowed with the metric topology defined by the usual metric \(d(x, y)|x - y|\). Show that, for every constant \(c \in \mathbb{R}\), the subset
\[
A = \{ x \in X; f(x) > c \}
\]
is open, and that the subset
\[
B = \{ x \in X; f(x) \geq c \}
\]
is closed. Possible hint: Write these sets as the preimages under \(f\) of suitable open or closed subsets of \(\mathbb{R}\).
Problem 1. Show that, in a metric space \((X, d)\), the closure of the open ball \(B(x, r)\) is contained in the closed ball \(\bar{B}(x, r)\). Give an example where \(\bar{B}(x, r)\) is different from the closure of \(B(x, r)\).

Problem 2. In a metric space \((X, d)\), compare the interior of the closed ball \(\bar{B}(x, r)\) to the open ball \(B(x, r)\), namely: Which one is always contained in the other? Are they always equal?

Problem 3. Let \((X, d)\) be a metric space and let \(A\) and \(B\) be subsets of \(X\). Prove or disprove the following statements (where \(\text{cl}(\)\) denotes the closure).

\begin{enumerate}
 \item \(\text{cl}(A \cup B) = \text{cl}(A) \cup \text{cl}(B)\)
 \item \(\text{cl}(A \cap B) = \text{cl}(A) \cap \text{cl}(B)\)
\end{enumerate}

Problem 4. Let \(A\) be a subset of a metric space \((X, d)\). Show that the boundary of \(A\) is equal to the boundary of the complement \(X - A\).
Problem 1. Let \(f : X \to Y \) be a map between the topological spaces \(X \) and \(Y \). Prove that \(f \) is continuous if and only if \(f(\text{cl}(A)) \subset \text{cl}(f(A)) \) for every \(A \subset X \).
(Hint: Recall that \(f \) is continuous if and only if, for every closed subset \(C \) of \(Y \), \(f^{-1}(C) \) is closed in \(X \)).

Problem 2. Let the topological space \(X \) be the union of two closed subsets \(C_1 \) and \(C_2 \), let \(Y \) be another topological space, and consider two maps \(f_1 : C_1 \to Y \) and \(f_2 : C_2 \to Y \) which are continuous when \(C_1 \) and \(C_2 \) are endowed with the subspace topology. Finally, suppose that \(f_1(x) = f_2(x) \) for every \(x \in C_1 \cap C_2 \), so that we can define a map \(f : X = C_1 \cup C_2 \to Y \) without ambiguity by

\[
f(x) = \begin{cases}
 f_1(x) & \text{if } x \in C_1 \\
 f_2(x) & \text{if } x \in C_2
\end{cases}
\]

Show that \(f : X \to Y \) is continuous. (Hint: Same as Problem 1).

Problem 3. Show by a counterexample that the property of the previous problem may fail if we do not assume that \(C_1 \) and \(C_2 \) are closed.
Problem 1. Consider the subset \(A = \{ q \in \mathbb{Q} : 0 \leq q \leq 1 \} \) of \(\mathbb{R} \) with the subspace topology. (Recall that \(\mathbb{Q} \) is the set of all rational numbers).

a. Show that \(A \) is not closed in \(\mathbb{R} \). Conclude that it is not compact for the subspace topology.

b. By the previous item, we know that there exists an open covering \(\{ U_i \}_{i \in I} \) which admits no finite subcovering. Provide an explicit example of such a covering.

Problem 2. Let \(S \) be an infinite subset of a compact space \(X \). Prove that there exists a point \(x \in X \) such that for every open set \(U \) containing \(x \), there are infinitely many points in \(U \cap S \).

Problem 3. Let \(A \) be a compact subset of a metric space \((X, d) \). Let \(b \in X - A \). Define \(d(A, b) = \inf \{ d(a, b) : a \in A \} \). Namely, \(d(a, b) \geq d(A, b) \) for every \(a \in A \) and, for every \(\varepsilon > 0 \), there exists \(a \in A \) such that \(d(A, b) \leq d(a, b) \leq d(A, b) + \varepsilon \).

a. Prove that the function \(\varphi_b : A \rightarrow \mathbb{R} \) defined by \(\varphi_b(a) = d(a, b) \) is continuous.

b. Prove that there exists a point \(a \in A \) such that \(d(A, b) = d(a, b) \); in particular, \(d(A, b) > 0 \).

c. Prove that the function \(d_A : X - A \rightarrow \mathbb{R} \) defined by \(d_A(b) = d(A, b) \) is continuous on \(X - A \).

d. Suppose that \(X = \mathbb{R}^n \) with the usual topology, and \(A \) is closed but not necessarily compact. For \(b \in X - A \), does there still exist a point \(a \in A \) such that \(d(A, b) = d(a, b) \)?
Problem 1. Let the set \mathbb{R} of real numbers be endowed with the usual metric topology, and let $X = [0, 1) \cup \{2\} \cup [3, 4]$ be endowed with the subspace topology. Consider the subsets $A = (0, 1), B = [0, 1), C = \{2\}, D = (3, 4), E = [3, 4), F = [3, 4]$.

a. Which ones of the subsets A, B, C, D, E, F are open in X for the subspace topology?
b. Which ones of the subsets A, B, C, D, E, F are closed in X for the subspace topology?

Problem 2. Let $f: X \to Y$ be a function from a set X to a topological space Y.

a. Show that the set $T = \{f^{-1}(V); V$ open in $Y\}$, consisting of all the preimages of open subsets of Y, is a topology on X.
b. Show that T is the smallest topology on X for which the map $f: X \to Y$ is continuous. Namely, if T' is another topology on X such that f is continuous as a function defined on the topological space (X, T'), then T' contains T.

Problem 3. Let A and B be two subsets of a topological space X. As usual, let $A - B = \{x; x \in A$ and $x \notin B\}$, and let $\text{cl}(A)$ and $\text{int}(A)$ denote the closure and the interior of A. Show that $\text{int}(A - B) = \text{int}(A) - \text{cl}(B)$. (Possible hints: Show that each set is contained in the other one; a picture may be helpful).

Problem 4. Let (X, d) be a compact metric space, and let $C(X)$ denote the set of all continuous functions $f: X \to \mathbb{R}$. For every $f, g \in C(X)$, let

$$D(f, g) = \max\{|f(x) - g(x)|; x \in X\}$$

be the maximum value taken by the function $x \mapsto |f(x) - g(x)|$ over X. It can be easily shown, and you should assume without proof, that this defines a metric D on $C(X)$. Finally, let K be a compact subset of this metric space $(C(X), D)$.

Show that, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ for every $x, y \in X$ with $d(x, y) < \delta$ and for every $f \in K$. (Note that δ should be independent of x, y and f. Possible hint: proof by contradiction).
Problem 1. Let \(f : X \to Y \) be a continuous function between the topological spaces \(X \) and \(Y \). The graph of \(f \) is the subset
\[
G_f = \{(x, y) \in X \times Y ; y = f(x)\}
\]
of the product \(X \times Y \). Endow \(X \times Y \) with the product topology, and \(G_f \) with the subspace topology.

a. Show that the function \(g : X \to G_f \) defined by \(g(x) = (x, f(x)) \) is a homeomorphism.

b. Assume in addition that the topological space \(Y \) is Hausdorff. Show that the graph \(G_f \) is a closed subset of \(X \times Y \).

c. Show that the hypothesis that \(Y \) is Hausdorff is necessary in the previous question. Namely give an example of a continuous function \(f \) whose graph \(G_f \) is not closed in \(X \times Y \). (\(Y \) will necessarily be non-Hausdorff, so you will need to dig outside of our usual source of counterexamples; namely, subspaces of \(\mathbb{R} \) will not suffice).
Let \(\{X_i\}_{i \in I} \) be a family of topological spaces \(X_i \), and let \(X = \prod_{i \in I} X_i \) be their product. Recall that \(X \) consists of all families \(x = (x_i)_{i \in I} \) where \(x_i \in X_i \) for every \(i \in I \). For every \(j \in I \), consider the \(j \)-projection map \(\pi_j: X \to X_j \), which associates to \(x = (x_i)_{i \in I} \) its \(j \)-coordinate \(x_j \).

Problem 1. Show that, if the product \(X = \prod_{i \in I} X_i \) is endowed with the product topology, the \(j \)-projection map \(\pi_j: X \to X_j \) is continuous for every \(j \in I \).

Problem 2. Show that the product topology is the smallest topology \(T \) on \(X \) for which all projection maps \(\pi_j: (X, T) \to X_j \) are continuous.

Problem 3. Let \(Y \) be a topological space, and consider a function \(f: Y \to X \) whose \(i \)-coordinate functions \(f_i: Y \to X_i \) are defined by the property that \(f(y) = (f_i(y))_{i \in I} \); namely \(f_i = f \circ \pi_i \). Show that, if \(X \) is endowed with the product topology, \(f \) is continuous if and only if \(f_i \) is continuous for every \(i \in I \).

Problem 4. Show that the product topology is the largest topology \(T \) on \(X \) for which the following property holds: for any topological space \(Y \) and for any function \(f: Y \to (X, T) \) whose coordinate function \(f_i = f \circ \pi_i: Y \to X_i \) are all continuous, then \(f: Y \to (X, T) \) is continuous. (Possible hint: consider \(Y \) to be the set \(X \) endowed with the product topology, and \(f \) the identity map defined by \(f(x) = x \).)

Problem 5. Show that the product topology is the only topology \(T \) on \(X \) for which the following property holds: for any topological space \(Y \) and for any function \(f: Y \to (X, T) \), the function \(f: Y \to (X, T) \) is continuous if and only if all its coordinate functions \(f_i = f \circ \pi_i: Y \to X_i \) are continuous.
Problem 1. Let X be a topological space.

a. Show that, if X is connected, every subset $A \subset X$ that is different from \emptyset and X has non-empty boundary.

b. Conversely, suppose that every subset $A \subset X$ that is different from \emptyset and X has non-empty boundary. Does this imply that X is connected?

Problem 2. Let X be the Cantor set. Show that every connected subspace of X consists of only 0 or 1 point.

Problem 3. Let Y be a connected subspace of the topological space X. Prove, or disprove by a counterexample:

a. the closure $\text{cl}(A)$ is connected;

b. the boundary $\delta A = \text{cl}(A) \cap \text{cl}(X - A)$ is connected;

c. the interior $\text{int}(A)$ is connected.
Problem 1. Let \(X = \mathbb{R}^2 - \{0\} \) be the plane minus the origin, with the usual topology. Let \(\bar{X} \) be the partition of \(X \) consisting of the sets \(\{(2^n x, 2^n y); n \in \mathbb{Z}\} \). Namely two points are in the same set of the partition if and only if one is obtained from the other one by multiplication by a power of 2. Let \(p: X \to \bar{X} \) be the quotient map, and endow \(\bar{X} \) with the quotient topology.

a. Consider the map \(f: X \to S^1 \times S^1 \) defined by
\[
f(x, y) = \left(\left(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}} \right), \left(\cos \left(2\pi \frac{\log \sqrt{x^2+y^2}}{\log 2} \right), \sin \left(2\pi \frac{\log \sqrt{x^2+y^2}}{\log 2} \right) \right) \right).
\]
Show that \(f \) induces a continuous bijection \(\bar{f}: \bar{X} \to S^1 \times S^1 \) for which \(f = \bar{f} \circ p \).

b. Show that \(\bar{X} \) is compact. Possible hint: Find a compact subset \(K \subset X \) such that \(p(K) = \bar{X} \).

c. Show that \(\bar{f} \) is a homeomorphism.

Problem 2. For every \(\theta_0 \), consider in the plane the curve \(S_{\theta_0} \) whose equation in polar coordinates is
\[
\theta = \theta_0 + \frac{1}{(r-1)(2-r)}, \quad 1 < r < 2.
\]
In particular, one end of \(S_{\theta_0} \) spirals around the circle \(C_1 \) of radius 1 centered at the origin, and the other around the circle \(C_2 \) of radius 2 around the origin.

Let \(X \) be the annulus consisting of all those points of the plane whose polar coordinates \([r, \theta] \) are such that \(1 \leq r \leq 2 \). Consider the partition \(\tilde{X} \) of \(X \) whose elements consist of the circle \(C_1 \), the circle \(C_2 \), and all curves \(S_{\theta_0} \) with \(0 \leq \theta_0 < 2\pi \).

Show that, when \(X \) is endowed with the subspace topology induced by the usual topology of the plane and when \(\tilde{X} \) is induced with the quotient topology, the space \(\tilde{X} \) is not Hausdorff.