3. Lecture 3

3.1. Freely generate qfh-sheaves. We recall that if F is a homotopy invariant presheaf with transfers in the sense of the last lecture, then we have a well defined pairing

$$F(X) \otimes H_0(X/S) \to F(S)$$

given by associating to any irreducible $i : Y \subset X$ finite, surjective over S the mapping $Tr_{Y/S} \circ i^* : F(X) \to F(Y) \to F(S)$. Moreover, recall that any qfh-sheaf admits transfers.

Consider the following presheaf, where $\mathbb{Z}[1/p]$ denotes localization of the residue characteristic of k (so that if k is of characteristic 0, then $\mathbb{Z}[1/p]$ should be read as \mathbb{Z}):

$$(Sch/k)^{op} \to Ab, \ Y \mapsto \mathbb{Z}[1/p]Hom_{(Sch/k)}(Y, X).$$

We denote by F_X the associated qfh-sheaf.

The following result of Suslin-Voevodsky identifies this sheaf when applied to normal varieties and relates this to the Suslin complex $Sus_\ast(X)$ of X. One can interpret this theorem as saying that cycles in $X \times Y$ each component of which is finite and surjective over a normal variety Y are locally in the qfh-topology a sum of graphs of morphisms from Y to X.

Theorem 3.1. If $Y \in (Sch/k)$ is normal, then

$$F_X(Y) = C_0(X \times Y/Y) \otimes \mathbb{Z}[1/p].$$

In particular,

$$F_X(\Delta^\bullet) = Sus_\ast(X) \otimes \mathbb{Z}[1/p].$$

Sheafifying in the qfh-topology gives us transfers. The following proposition enables us to obtain presheaves which are homotopy invariant.

Proposition 3.2. Assume that F is a presheaf with transfers. Let (F_\ast) denote the complex of sheaves given in degree q as the qfh-sheaf associated to the presheaf $Y \mapsto F(Y \times \Delta^q)$. For any $q \geq 0$, consider the presheaf

$$\mathcal{H}_q((F_\ast)) : (Sch/k)^{op} \to Ab$$

defined as the homology sheaves of the complex (F_\ast) (or, equivalently, the sheaf associated to the presheaf $Y \mapsto H_q(F(Y \times \Delta^\bullet))$). Then $\mathcal{H}_q((F_\ast))$ is a homotopy invariant presheaf with transfers.

Proof. One first shows that evaluation at 0, 1 $\in \Delta^1$ determine chain homotopy maps

$$F(Y \times \Delta^\bullet \times \Delta^1) \to F(Y \times \Delta^\bullet).$$

This enables one to show that upon taking qfh-sheaves that $\mathcal{H}_q((F_\ast))$ is homotopy invariant. Moreover, the naturality properties of transfers on F imply that $Tr_{Y/S}$ gives us a transfer map on complexes $F(X \times \Delta^\bullet) \to F(S \times \Delta^\bullet)$, so that taking associated qfh-sheaves gives us transfers on $\mathcal{H}_q((F_\ast))$. \square
3.2. Proof of Suslin-Voevodsky theorem. We shall sketch a proof of the following theorem.

Theorem 3.3. (Suslin-Voevodsky [2]) Let F_X denote the qfh-sheaf associated to the presheaf

$$(\text{Sch/k})^{op} \rightarrow \text{Ab}, \quad Y \mapsto \mathbb{Z}[1/p] \text{Hom}_{(\text{Sch/k})}(Y, X).$$

Then for any positive integer n invertible in k, the natural maps of complexes of qfh-sheaves

$$F_X(\Delta^\bullet) \rightarrow (F_X^\ast) \leftarrow F_X$$

induce isomorphisms of Ext-groups

$$(3.3.1) \quad \text{Ext}^q_{\text{qfh}}(\mathbb{Z}/n) \rightarrow \text{Ext}^q_{\text{qfh}}(\mathbb{Z}/n).$$

Moreover,

$$\text{Ext}^q_{\text{qfh}}(F_X, \mathbb{Z}/n) \simeq \text{Ext}^q(X, \mathbb{Z}/n).$$

Proof. The two isomorphisms of (3.3.1) are proved considering the two hypercohomology spectral sequences for $\text{Ext}^q_{\text{qfh}}(\mathbb{Z}/n)$. The first isomorphism follows by comparing the homology at each level of the map of complexes of presheaves with transfers

$$F_X(\Delta^\bullet) \otimes \mathbb{Z}/n \rightarrow (F_X^\ast) \otimes \mathbb{Z}/n,$$

where the left hand complex is viewed as a complex of constant presheaves. Since the homology presheaves of these complexes are presheaves with transfer which are annihilated by multiplication by n, we can apply the Suslin-Voevodsky theorem to conclude that the induced map on homology presheaves is an isomorphism.

The second isomorphism does not use the fact that F_X is a presheaf with transfers, but is a general fact that $F_X \rightarrow (F_X(- \times \Delta^0))$ induces an isomorphism in $\text{Ext}^q_{\text{qfh}}(-, \mathbb{Z}/n)$.

The right hand side is almost by definition $H^\ast(X_{\text{qfh}}, \mathbb{Z}/n)$. The comparison with the etale cohomology of X is achieved by realizing explicitly sufficiently fine qfh coverings together with “resolution of singularities” (in characteristic $p > 0$, one uses de Jong’s modifications rather than resolutions which are not known to exist).

3.3. Discussion of Chow groups. Recall that X is said to be integral if $O_X(U)$ is an integral domain for all open subsets $U \subset X$. The field of fractions K of such an integral variety is the field of fractions of $O_X(U)$ for any affine open subset U. If $O_X(U)$ is integrally closed in K for every affine open subset U, then the stalk $O_{X, x}$ at any (scheme-theoretic point) $x \in X$ of codimension 1 is a discrete valuation ring.

Definition 3.4. Let X be an integral variety regular in codimension 1 and let K be its field of fractions. For any $0 \neq f \in K$, we define the principal divisor (f) associated to f to be the following formal sum of codimension 1, irreducible subvarieties

$$(f) = \sum_{x \in X^{(1)}} v_x(f) [x].$$

Here, $X^{(1)} \subset X$ consists of the scheme-theoretic points of codimension 1, $v_x : K^* \rightarrow \mathbb{Z}$ is the discrete valuation at $x \in X^{(1)}$, and $[x] \subset X$ is the codimension 1 irreducible subvariety of X given as the closure of x.

A formal sum

$$D = \sum_{x \in X^{(1)}} n_x [x], \quad n_x \in \mathbb{Z}$$
with all but finitely many n_x equal to 0 is said to be a locally principal divisor provided that for every $x \in X^{(1)}$ there exists some Zariski open neighborhood $x \in U_x \subset X$ and some $f_x \in K$ such that $D_{|U_x} = (f_x)|_{U_x}$.

Definition 3.5. Let X be a quasi-projective algebraic variety. An algebraic r-cycle on X if a formal sum

$$
\sum_Y n_Y[Y], \quad Y \text{ irreducible of dimension } r, \quad n_Y \in \mathbb{Z}
$$

with all but finitely many n_Y equal to 0.

Equivalently, an algebraic r-cycle is a finite integer combination of points of X of dimension r.

If $Y \subset X$ is a subvariety each of whose irreducible components Y_1, \ldots, Y_m is r-dimensional, then the algebraic r-cycle

$$
Z = \sum_{i=1}^m [Y_i]
$$

is called the cycle associated to Y.

The group of (algebraic) r-cycles on X will be denoted $Z^r(X)$.

Two r-cycles Z, Z' on a quasi-projective variety X if their difference lies in the subgroup $Z_{r, \text{rat}}(X) \subset Z^r(X)$ generated by cycles of the form $W_{|X \times \{p\}} - W_{|X \times \{q\}}$, where $U \subset \mathbb{P}^1$ is a Zariski open set containing points $p, q \in U$ and $W \subset X \times U$ is a cycle each of whose irreducible components maps surjectively onto U.

The Chow group $CH_r(X) = Z^r(X)/Z_{r, \text{rat}}(X)$ is the group of r-cycles modulo rational equivalence.

Theorem 3.6. (cf. [1]) Assume that X is an integral variety regular in codimension 1. Let $\mathcal{D}(X)$ denote the group of locally principal divisors on X modulo principal divisors. Then there is a natural isomorphism

$$
\text{Pic}(X) \sim \sim \mathcal{D}(X).
$$

If $\mathcal{L} \in \text{Pic}(X)$ has a non-zero global section $s \in \mathcal{L}(X) = \Gamma(X, \mathcal{L})$, then this isomorphism sends \mathcal{L} to $\sum_{x \in X^{(1)}(\mathbb{Q})} e_x(s)[x]$.

Moreover, if $\mathcal{O}_{X,x}$ is a unique factorization domain for every $x \in X$, then

$$
\mathcal{D}(X) \sim CH^1(X),
$$

the Chow group of codimension 1 cycles on X modulo rational equivalence.

Remark 3.7. Not only is this an example of relating bundles to cycles, but it is also an example of duality. Namely, $\text{Pic}(X)$ is contravariant, whereas $CH_r(\mathcal{L})$ is covariant for proper maps. This suggests that for $\text{Pic}(X)$ to be isomorphic to $CH^1(X)$, some smoothness condition on X is required.

Observe that in the above definition we can replace the role of $r + 1$-cycles on $X \times \mathbb{P}^1$ and their geometric fibres over $0, \infty$ by $r + 1$-cycles on $X \times U$ for any non-empty Zariski open $U \subset X$ and geometric fibres over any two k-rational points $p, q \in U$.

Remark 3.8. Given some $r + 1$ dimensional irreducible subvariety $V \subset X$ together with some $f \in k(V)$, we may define $(f) = \sum_S \text{ord}_S(f)[S]$ where S runs through the codimension 1 irreducible subvarieties of V. Here, $\text{ord}_S(\mathcal{L})$ is the valuation
centered on S if V is regular at the codimension 1 point corresponding to S; more generally, $\text{ord}_S(f)$ is defined to be the length of the $O_{V,S}$-module $O_{V,S}/(f)$.

We readily check that (f) is rationally equivalent to 0: namely, we associate to (V,f) the closure $W = \Gamma_f \subset X \times P^1$ of the graph of the rational map $V \dasharrow P^1$ determined by f. Then $(f) = W_{|X \times \{0\}} - W_{X \times \{\infty\}}$.

Conversely, given an $r+1$-dimensional irreducible subvariety W on $X \times P^1$ which maps onto P^1, the composition $W \subset X \times P^1 \dasharrow P^1$ determines $f \in \text{frac}(W)$ such that

$$(f) = W_{|X \times \{0\}} - W_{X \times \{\infty\}}.$$

Thus, the definition of rational equivalence on r-cycles of X can be given in terms of the equivalence relation generated by

$$\{(f), f \in \text{frac}(W) ; W \text{ irreducible of dimension } r+1\}$$

In particular, we conclude that the subgroup of principal divisors inside the group of all locally principal divisors consists precisely of those locally principal divisors which are rationally equivalent to 0.

Example 3.9. For essentially formal reasons, $\text{Pic}(X) \simeq H^1(X, \mathcal{O}_X^*)$. If k is the complex field, we can use the exponential sequence of sheaves in the analytic topology

$$0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_X \xrightarrow{exp} \mathcal{O}_X^* \rightarrow 0$$

to conclude that the kernel of $H^1(X^{an}, \mathcal{O}_X^*) \rightarrow H^2(X^{an}, \mathbb{Z})$ is the complex vector space $H^1(X^{an}, \mathcal{O}_X)$ modulo the discrete subgroup $\mathcal{H}^1(X^{an}, \mathbb{Z})$. For example, if $X = C$ is a smooth, projective curve of genus g, then $\mathcal{H}^1(C)$ fits in a short exact sequence

$$0 \rightarrow \mathbb{C}^g/\mathbb{Z}^{2g} = H^1(C, \mathcal{O}_C^*)/H^1(C^{an}, \mathbb{Z}) \rightarrow \mathcal{H}^1(C) \rightarrow \mathbb{Z} = H^2(C^{an}, \mathbb{Z}) \rightarrow 0.$$

Example 3.10. Let $X = \mathbb{A}^N$. Then any $N-1$-cycle (i.e., Weil divisor) $Z \in \mathcal{H}_{N-1}(\mathbb{A}^N)$ is principal, so that $\mathcal{H}_{N-1}(\mathbb{A}^N) = 0$.

More generally, consider the map $\mu : \mathbb{A}^N \times \mathbb{A}^1 \rightarrow \mathbb{P}^N \times \mathbb{A}^1$ which sends $(x_1, \ldots, x_n), t$ to $(t \cdot x_1, \ldots, t \cdot x_n, 1), t$. Consider an irreducible subvariety $Z \subset \mathbb{A}^N$ of dimension $r > N$ not containing the origin and $\mathbb{Z} \subset \mathbb{P}^N$ be its closure. Let $W = \mu^{-1}(\mathbb{Z} \times \mathbb{A}^1)$. Then $W[0] = \emptyset$ whereas $W[1] = Z$. Thus, $\mathcal{H}_r(\mathbb{A}^N) = 0$ for any $r < N$.

Example 3.11. Arguing in a similar geometric fashion, we see that the inclusion of a linear plane $P^{N-1} \subset \mathbb{P}^N$ induces an isomorphism $\mathcal{H}_r(P^{N-1}) = \mathcal{H}_r(\mathbb{P}^N)$ provided that $r < N$ and thus we conclude by induction that $\mathcal{H}_r(\mathbb{P}^N) = \mathbb{Z}$ if $r \leq N$. Namely, consider $\mu : \mathbb{P}^N \times \mathbb{A}^1 \rightarrow \mathbb{P}^N \times \mathbb{A}^1$ sending $(x_0, \ldots, x_N), t$ to $(x_0, \ldots, x_{N-1}, t \cdot x_N), t$ and set $W = \mu^{-1}(\mathbb{Z} \times \mathbb{A}^1)$ for any Z not containing $(0, \ldots, 0, 1)$. Then $W[0] = pr_{N*}(Z), W[1] = Z$.

Example 3.12. Let C be a smooth curve. Then $\text{Pic}(C) \simeq \mathcal{H}_0(X)$.

Definition 3.13. If $f : X \rightarrow Y$ is a proper map of quasi-projective varieties, then the proper push-forward of cycles determines a well defined homomorphism

$$f_* : \mathcal{H}_r(X) \rightarrow \mathcal{H}_r(Y), \quad r \geq 0.$$

Namely, if $Z \subset X$ is an irreducible subvariety of X of dimension r, then $[Z]$ is sent to $d : [f(Z)] \subset \mathcal{H}_r(Y)$ where $[k(Z) : k(f(Z))] = d$ if $\text{dim} Z = \text{dim} f(Z)$ and is sent to 0 otherwise.
If \(g : W \to X \) is a flat map of quasi-projective varieties of relative dimension \(e \), then the flat pull-back of cycles induces a well defined homomorphism

\[g^* : CH_r(X) \to CH_{r+e}(W), \quad r \geq 0. \]

Namely, if \(Z \subset X \) is an irreducible subvariety of \(X \) of dimension \(r \), then \([Z]\) is sent to the cycle on \(W \) associated to \(Z \times_X W \subset W \).

Proposition 3.14. Let \(Y \) be a closed subvariety of \(X \) and let \(U = X \setminus Y \). Let \(i : Y \to X, j : U \to X \) be the inclusions. Then the sequence

\[CH_r(Y) \xrightarrow{i_*} CH_r(X) \xrightarrow{j^*} CH_r(U) \to 0 \]

is exact for any \(r \geq 0 \).

Proof. If \(V \subset U \) is an irreducible subvariety of \(U \) of dimension \(r \), then the closure of \(V \) in \(X \), \(\overline{V} \subset X \), is an irreducible subvariety of \(X \) of dimension \(r \) with the property that \(j^*(\overline{V}) = [V] \). Thus, we have an exact sequence

\[Z_r(Y) \xrightarrow{i_*} Z_r(X) \xrightarrow{j^*} Z_r(U) \to 0. \]

If \(Z = \sum n_i [Y_i] \) is a cycle on \(X \) with \(j^*(Z) = 0 \in CH_r(U) \), then \(j^*Z = \sum W, f (f) \) where each \(W \subset U \) is an irreducible subvarieties of \(U \) of dimension \(r + 1 \) and \(f \in k(W) \). Thus, \(Z' = \sum n_i [\overline{Y}_i] - \sum \pi f (f) \) is an \(r \)-cycle on \(Y \) with the property that \(i_*(Z') \) is rationally equivalent to \(Z \). Exactness of the asserted sequence of Chow groups is now clear.

\[\square \]

Corollary 3.15. Let \(H \subset \mathbb{P}^N \) be a hypersurface of degree \(d \). Then \(CH_{N-1}(\mathbb{P}^N \setminus H) = \mathbb{Z}/d\mathbb{Z} \).

Example 3.16. Mumford shows that if \(S \) is a projective smooth surface with a non-zero global algebraic 2-form (i.e., \(H^0(S, \Lambda^2(\Omega_S)) \neq 0 \)), then \(CH_0(S) \) is not finite dimensional (i.e., must be very large).

Bloch’s Conjecture predicts that if \(S \) is a projective, smooth surface with geometric genus equal to 0 (i.e., \(H^0(S, \Lambda^2(\Omega_S)) = 0 \)), then the natural map from \(CH_0(S) \) to the (finite dimensional) Albanese variety is injective.

3.4 Intersection product

Theorem 3.17. Let \(X \) be a smooth quasi-projective variety of dimension \(d \). Then there exists a pairing

\[CH_r(X) \otimes CH_s(X) \xrightarrow{\cdot} CH_{d-r-s}, \quad d \geq r + s, \]

with the property that if \(Z = [Y], Z' = [W] \) are irreducible cycles of dimension \(r, s \) respectively and if \(Y \cap W \) has dimension \(\leq d - r - s \), then \(Z \bullet Z' \) is a cycle which is a sum with positive coefficients indexed by the irreducible subvarieties of \(Y \cap W \) of dimension \(d - r - s \).

For notational purposes, we shall often write \(CH^*(X) \) for \(CH_{d-s}(X) \). With this indexing convention, the intersection pairing has the form

\[CH^*(X) \otimes CH^*(X) \xrightarrow{\cdot} CH^{*+t}(X). \]
Proof. Classically, this was proved by showing the following geometric fact: given a codimension \(r \) cycle \(Z \) and a codimension \(s \) cycle \(W = \sum_j m_j R_j \) with \(r + s \leq d \), then there is another codimension \(r \) cycle \(Z' = \sum_i n_i Y_i \) rationally equivalent to \(Z \) (i.e., determining the same element in \(CH^r(X) \)) such that \(Z' \) meets \(W \) “properly”; in other words, every component \(C_{i,j,k} \) of each \(Y_i \cap R_j \) has codimension \(r + s \). One then defines

\[
Z' \cdot W = \sum_{i,j,k} n_i m_j \cdot \text{int}(Y_i \cap R_j, C_{i,j,k}) C_{i,j,k}
\]

where \(\text{int}(Y_i \cap R_j, C_{i,j,k}) \) is a positive integer determined using local commutative algebra, the intersection multiplicity. Furthermore, one shows that if one chooses a \(Z'' \) rationally equivalent to both \(Z, Z' \) and also intersecting \(W \) properly, then \(Z' \cdot W \) is rationally equivalent to \(Z'' \cdot W \).

To be continued next lecture . . .

□

References

Department of Mathematics, Northwestern University, Evanston, IL 60208
E-mail address: eric@math.northwestern.edu