Class Website https://blackboard.usc.edu (follow link to BME 451)
Be sure to change your email to the one you use most frequently as we will send out email messages during the semester using your Blackboard listed email address

Course Goals
The main goal is to introduce students to the diverse and highly interdisciplinary field of biomedical microdevices with an emphasis on biomedical microelectromechanical systems (bioMEMS) and microtechnologies. Students will learn the building blocks of these devices, how they are constructed, and the principles governing their operation and performance. Emphasis is placed on principles for measurement of small-scale biological phenomena and clinical applications so that students can appreciate the technical challenges and opportunities that biomedical microdevices brings to life and medical sciences. Finally, students will be able to design and evaluate biomedical microdevices.

Learning Objectives and Program Outcomes
• Integrate knowledge of life and medical science learned in previous courses to create implementable solutions to microengineering problems at the interface of engineering, medicine, and biology (outcomes 1 and 4)
• Select appropriate materials for the construction of biomedical microdevices (outcomes 1, 3, and 4)
• Develop and design simple layouts and fabrication process flows for created biomedical microdevices (outcomes 3, 4, and 9)
• Construct simple microfluidic systems and perform experiments using these devices (outcome 2 and 9)
• Describe different biosensing mechanisms and choose the appropriate method for a particular application (outcomes 1 and 3)
• Function effectively as a part of a group of student engineers working on a multi-week project (outcomes 4 and 6)
• Document in writing and orally exercises and projects performed individually and as part of a team of student engineers (outcomes 4-6)
• Independently acquire through reading, practice exercises, and self-initiated research technical knowledge related to the course content and projects, including the emerging applications of biomedical microdevices (outcomes 4, 7, and 8)

Course Topics and Outline
The course plan below reflects the course goal and objectives. Note that there are more topics than can be covered and special topics are rotated from year to year such that the latter half of the class can be significantly different than in previous years. The material will be covered in the following tentative order:

Introduction and Overview: Why miniaturization? Dimensions and scaling challenges in bioMEMS
BioMEMS Materials: From silicon to polymers, the need for biocompatibility
Microfabrication for BioMEMS:
 Introduction to micropatterning, micromachining, and micromolding with consideration given to device/system design
 Surface and bulk micromachining, etching and thin film processes
System Integration: Bonding, assembly, packaging, and other microfabrication techniques
Biosignal Transduction Mechanisms:
 Challenges of biosensing, principles: mechanical, thermal, optical, acoustic, electrochemical, conductometric, potentiometric, amperometric
BioSensors: Examples and applications
Cell Manipulation: Governing forces and manipulation strategies
Microfluidics: Introduction, properties of biological fluids in microchannels, devices
Lab-on-a-Chip: Microanalytical systems in chemistry and biology
MEMS Implants and Bioelectric Interfaces: Implantable microelectrodes, shunts, etc.
Microengineering in Biotechnology: PCR, microarray technology, optical detection
Biomedical Microdevice Research at USC: Guest speakers and instructors research
What's next? Frontiers in BioMEMS
 Nanolithography, biomimetic nanodevices, nanotubes
 Commercialized devices, in depth look at specific topics in biomedical microdevices

Assessment
Learners are assessed based on their grades from homework and a course project using the following:

(1) Homework (50%)
Regular homework sets (~6) will be assigned on a weekly basis for ~1st half of the course and are due at the beginning of class on Thursdays. Assignments test your understanding of material presented in class and your ability to apply that knowledge to engineering problems. From time to time, you may also be asked to do your own research and discover new material as part of your homework assignment.
Please bring a physical copy to class (do not use the digital drop box). All derivations must be included with symbols before numbers are “plugged in.” Units must accompany numerical results when applicable.
Collaboration is permitted on HW, however copying is not. Collaboration is highly encouraged and includes discussions of concepts, exchange of information, and working together. Each student is responsible for individually preparing and fully understanding the work they submit. Late homework is not accepted.

(2) Final Project (50%) = Milestones (10%) + Paper (20%) + Presentations (20%)
Students will work in teams of 2 or 3 (depending on class size) to research a special topic of their choice in bioMEMS. A list of possible topics will be provided. Groups may also choose a topic of their own with instructor approval.
Final project milestones will be assigned during the 2nd half of the course. These milestones will be used in the calculation of your final project grade (10%).
A jointly written final paper reviewing the selected topic will account for 20% of the final grade. Final papers are due on Nov. 25, 2008 and will be assessed using Turnitin. There is a no-tolerance policy on plagiarism; any plagiarism will result in a “zero” grade for the final paper.
The remaining 20% of the grade will be determined by the joint presentation prepared using Microsoft Powerpoint. Presentations will be given to the rest of the class on either Nov. 25 or Dec. 2 (and if necessary, on Dec. 11, 11a-1p). There will be a sign-up for presentation times.
There is no final exam for this class.

(3) How to get help:
The teaching assistant will hold office hours every week. The instructor will hold office hours by appointment. Also, the course uses the “Discussion Board” feature on Blackboard for posting questions on the course and homework. You are encouraged to use this tool as much as possible. Both the instructor and teaching assistant will regularly post responses that are available to the entire class. Students are also encouraged to post responses. Anonymous posting is enabled. Please plan ahead when posting questions related to homework; there is no guarantee that questions posted the night before the HW due date will be answered.

(4) Notes on Grading:
Final project grades will be determined by considering individual and team contributions. Final course grades are first computed as percentages and then curved.

(5) Notes on Cheating:
The policy is simple: Just don't do it! There is a no-tolerance policy on cheating. In this class, cheating is primarily copying HW from other students, current or past.
Other MEMS Classes
This introductory course will prepare students for advanced MEMS courses including BME-551, EE-607, and EE-608L. (AME-455, 537; BME-551; EE-438L, 504L, 607, 608L; MASC-439, 514L, 534 are also recommended for those interested in pursuing a MEMS career)

Additional MEMS References
The following text may be useful for finding supplemental information. Books are available for 2-hour loan where indicated:
Manz, A. & Becker H. Microsystem Technology in Chemistry and Life Science, (on Blackboard)

Statement for Students with Disabilities
Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to the TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m. - 5:00 p.m., Monday through Friday. The phone number for DSP is (213) 740-0776.

Disclaimer
Taking this course will not guarantee or prepare you for a MEMS job in industry. MEMS is a tool and not a replacement for firm grounding in engineering fundamentals.

1 BME Program Outcomes
Students who successfully complete the USC BME program should be able to:
1. Apply knowledge of mathematics, physical sciences, life sciences, and engineering to formulate and study or solve engineering problems, including problems at the interface of engineering, medicine, and biology
2. Plan and conduct experiments as well as analyze and interpret experimental measurements collected on physical systems and living systems
3. Design electronic, mechanical and/or computer-based devices and software for applications including medical instrumentation, physiological measurement and signal processing, prosthesis development, and engineering simulation of living systems
4. Understand the professional, ethical, and societal responsibilities pertinent to the practice of engineering
5. Communicate effectively using appropriate technology and information resources to document work, analyze engineering problems and solutions, and present project results
6. Lead a team of student engineers performing a laboratory exercise or a class project; participate in various roles to the team and understand the contribution of each role to the team’s effort
7. Be independent learners who can master new knowledge and technologies
8. Utilize their broad liberal education to explore and analyze the impact of engineering and technology solutions on society and health care
9. Select and use modern engineering tools for analysis, design, experimentation and testing
10. Successfully engage in further education in engineering, medicine, and biomedical sciences