The Edmonds/Karp algorithm is a specific implementation of the generic Ford/Fulkerson algorithm for computing a Maximum Flow in a network. Recall that the Ford/Fulkerson algorithm looks as follows:

\begin{algorithm}
1: Start with flow $f_e = 0$ for all edges e.
2: while the residual graph G_f contains an s-t path P do
3: Augment the flow f along some such path P.
end while
\end{algorithm}

As we saw in class, and the textbook explains, this algorithm is always correct, and will always terminate (with an integral Max-Flow) within $O(C)$ iterations when all edge costs are integers; here, $C \leq \sum_e c_e$.

However, a poor choice of the path P for augmentation may result in actually taking $\Omega(C)$ iterations — furthermore, when the edge costs are irrational, the algorithm may not terminate at all. Hence, we want to make “good” choices of the path P for augmentation.

A first natural choice is to augment along a path P with largest bottleneck capacity, called a widest path.

We did not analyze this heuristic in class, nor will we here in detail, but the following can be proved about it.

Theorem 1 If the widest path is chosen in each iteration, then the Ford/Fulkerson algorithm terminates in $O(m \log C)$ iterations.

Notice that this is actually polynomial in the size of the input, as opposed to the previous bound, which was pseudo-polynomial.

Proof Sketch. The idea is that each flow can be “decomposed” into at most m paths: that is, we can identify at most m paths P_i from s to t, carrying flow, such that these paths together account for all of the flow f. By the Pigeon Hole Principle, one of them carries at least a $1/m$ fraction of the total flow, so the widest path does as well. Thus, if F^* is the value of a maximum flow, then in each iteration, we increase the amount of flow we found by a $1/m$ fraction of $F^* - \nu(f)$. Some relatively simple arithmetic now shows that after $O(\log F^* \log m)$ iterations, we have found a flow of value F^*, i.e., a maximum flow.

The other important question is of course whether we can actually find the widest path. As observed in class, a relatively simple dynamic program lets us do that. Perhaps even simpler is a divide-and-conquer approach. We try to find the “bottleneck edge” in the residual graph G_f via binary search. Having sorted the edges by their residual capacity c'_e, we start with the median edge e, and ignore all edges of smaller capacity. If there is an s-t path using only the remaining edges, we know that the bottleneck edge of the widest path has capacity at least c'_e, and can continue recursively with the edges of capacity at least c'_e. Otherwise (if no s-t path is left using only high-capacity edges), we know that the bottleneck edge has smaller capacity, and recursively search among the edges of smaller residual capacity. This way, in $O(\log m)$ iterations, we find the bottleneck edge, and each iteration takes time $O(m)$, to look for an s-t path with BFS. Hence, we can find the widest path in time $O(m \log m)$.

In fact, we can do even better than this: we can adapt Dijkstra’s algorithm to find the widest s-t path with respect to c'_e (notice that the dynamic programming approach mentioned above would correspond to an
adaptation of the Bellman/Ford algorithm). For each node \(v \), in our modification, we let \(r_e \) denote the width of the widest path from \(s \) to \(v \) discovered so far. When we consider nodes \(u \) for inclusion in the growing set \(S \) of nodes, we pick the endpoint of the edge \(e = (v, u) \in S \times S \) maximizing the quantity \(\min(r(v), c_e) \), and include \(e \) and the endpoint \(u \). The same inductive proof as for Dijkstra shows that this finds the widest \(s-t \) path, and using Fibonacci Heaps \((-\), we can make it run in time \(O(m + n \log n) \).

1 The Edmonds/Karp Algorithm

While having an actual polynomial-time algorithm is already progress, we would even prefer to have an algorithm whose running time does not depend on \(C \) at all. After all, our MST or shortest paths algorithms use edge costs \(c_e \), but their running time depends only on the parameters \(m \) and \(n \).\(^1\) Such an algorithm is called strongly polynomial.

This is accomplished by the Edmonds/Karp algorithm, which gives yet another choice for the \(s-t \) path in the Ford/Fulkerson algorithm. If we look at the bad examples for Ford/Fulkerson, we see that the bad behavior can be attributed to two causes:

- We use paths with little capacity (addressed above).
- Our paths put flow on more edges than necessary.

The idea of the Edmonds/Karp algorithm is to attack the second weakness instead of the first, by always using a shortest \(s-t \) path in each iteration. Here, the length is counted as the number of edges of the path in the residual graph.

Notice that this length of the shortest path is always between 1 and \(n - 1 \). Furthermore, our intuition is that the shortest paths shouldn’t really get shorter: our algorithm keeps adding flow, and saturates edges \(e \) (by making them reach \(f_e = c_e \), or \(f_e = 0 \) for reverse edges) on the shortest paths early on. After that, we would expect that the shortest remaining paths keep getting longer, so after “not too many” iterations, the length should have reached \(n \), at which point there is no \(s-t \) path remaining.

This intuition turns out to be correct, and forms the core of the proof of the following theorem:

Theorem 2 The Edmonds/Karp algorithm terminates after \(O(mn) \) iterations.

Finding a shortest \(s-t \) path in the residual graph \(G_f \) is not very difficult. In fact, we do not even need to use Dijkstra’s algorithm (or Bellman/Ford), as all edge lengths are only counted as 1. We can instead simply run BFS, starting at \(s \), which takes time \(O(m) \). Hence, the running time of the Edmonds/Karp algorithm is \(O(m^2 n) \). Notice that, while this doesn’t look too bad at first sight, if the graph is dense (i.e., it has \(\Omega(n^2) \) edges), the running time is only bounded by \(O(n^5) \), which is quite a lot.

Proof of Theorem 2. We write \(P_r \) for the shortest path used in iteration \(r \) of the Edmonds-Karp algorithm, and \(|P_r| \) for the number of edges in it. Then, we know that the distance from \(s \) to \(t \) in iteration \(r \) was exactly \(|P_r| \). Our proof will establish the following two key claims:

1. The distance from \(s \) to \(t \) never decreases.
2. Between two successive saturations of the same edge \(e \) (i.e., two times \(r < r' \) at which \(f_e \) is increased to \(c_e \), or decreased to 0), the distance from \(s \) to \(t \) strictly increases.

Let us first see that these two claims imply the Theorem. In each iteration, the Ford/Fulkerson algorithm saturates the bottleneck edge \(\hat{e} \) on the path \(P_r \). In particular, each iteration saturates some edge. After at most \(m + 1 \) iterations, the same edge must be saturated again, so every \(m + 1 \) iterations, the distance increases by at least 1. But it can only increase to at most \(n \), so it increases at most \(n \) times. Hence, there can be at most \(O(mn) \) iterations.

\(^1\)Technically, of course, when they add \(b \)-bit numbers, they spend time \(O(b) \), so all the arithmetic operations and comparisons actually do take time \(\Theta(\log C) \). However, it is common to treat such arithmetic operations as taking only constant time, in which case we do want the algorithm to not depend on \(b \).
This completes the proof of the Theorem.

Lemma 3 Let \(r < r' \) be two iterations, and \(P, Q \) the shortest paths in those iterations, with the following properties:

1. There is at least one edge \(e \) such that \(P \) and \(Q \) push flow on \(e \) in opposite directions.

2. For all times \(r'' \in (r, r') \), the path \(P_{r''} \) chosen by the algorithm in iteration \(r'' \) does not push flow in the opposite direction from either \(P \) or \(Q \), for any edge \(e \in P_{r''} \).

Then, \(|P| < |Q| \).
Proof. We let the nodes of P be denoted by $1, 2, \ldots, k$, and the edges by $(1, 2), (2, 3), \ldots, (k-1, k)$. Also, we let $e_1 = (v_1 + 1, v_1), e_2 = (v_2 + 1, v_2), \ldots, e_{\ell} = (v_{\ell} + 1, v_{\ell})$ be all the edges on which Q pushes flow in opposite direction from P. By the first assumption in the lemma, we know that $\ell \geq 1$. To get from $v_0 := s = 1$ to $v_1 + 1$, the path Q uses a subpath Q_0. Then, to get from v_j to $v_{j+1} + 1$, the path Q uses a subpath Q_j, and finally, to get from v_{ℓ} to k, it uses a subpath Q_{ℓ}. Because we assumed the e_j to be all edges that are used by Q in the opposite direction, and because no paths at time $t'' \in (r, r')$ used any edge from Q or P in the opposite direction, we know that each Q_j is also a path in the residual graph at time r.

Now, P is a shortest s-t path at time r, and so going from node a to b through $a + 1, a + 2, \ldots, b - 1$ (as P does) must also be a shortest path from a to b. Otherwise, we could insert a shorter path, and obtain a shorter s-t path. In particular, we know that each Q_j, which is a path from v_j to $v_{j+1} + 1$ must contain at least $v_{j+1} + 1 - v_j$ edges, i.e., $|Q_j| \geq v_{j+1} + 1 - v_j$. (If $v_{j+1} < v_j$, then this is of course trivial.) Now, we know that the length of Q is $|Q| = \ell + \sum_{j=0}^{\ell} |Q_j|$. Substituting the inequality we argued a moment ago, this gives us that

$$|Q| \geq \ell + \sum_{j=0}^{\ell-1} (v_{j+1} + 1 - v_j) + (k - v_{\ell}) = 2\ell + \sum_{j=0}^{\ell-1} (v_{j+1} - v_j) + (k - v_{\ell}) = 2\ell + k - 1.$$

In the last step, we used that the series telescopes — all terms except v_{ℓ} and $-v_0$ cancel out with the next terms. Now, because $\ell \geq 1$, we get that $|Q| \geq k + 1 > |P|$, which proves the lemma. \hfill \blacksquare