No late submission will be granted, so you may want to start early. Contrary to the policy on homeworks, you cannot discuss problems, ideas, or solutions to this midterm with anyone (in or outside of class) except me. (Yes, not even Yu.) Also, as a reminder, you are not allowed to seek solutions to these problems online or elsewhere. If you are stuck on a problem and need hints, or you need help understanding a problem, you are welcome to e-mail me, or talk to me in person.

Problem 1

This problem is about inferring an ordering of items from partial information. You are to assign an order to variables x_1, \ldots, x_n, so that each number from 1 to n is assigned to exactly one variable. You are given C constraints of the form “x_j must lie between x_i and x_k”, written as (x_i, x_j, x_k). This constraint is satisfied if either $x_i < x_j < x_k$, or $x_k < x_j < x_i$. Your goal is to satisfy as many such constraints as possible.

It is not difficult to come up with examples where not all C constraints can be satisfied. It is also not terribly difficult to show that this problem is NP-hard to solve optimally. You are to give a constant factor approximation algorithm running in polynomial time (and prove its correctness and running time).

(a) Give a randomized algorithm that finds an ordering satisfying at least an $\alpha \leq 1$ fraction of the number of constraints that the optimum solution satisfies, in expectation\(^1\). The constant α should be independent of n and C.

(b) Derandomize your algorithm using the method of conditional expectations, resulting in a deterministic algorithm with the same approximation guarantee that does not make any reference to “expectation”, “probability” or any other probabilistic terms. (If your algorithm in the first part was already deterministic, there is nothing to do in this part.)

Problem 2

Consider a random multigraph G generated from the configuration model in which node v has degree d_v. (Reminder: this means that we draw a uniformly random multigraph — allowing self-loops and parallel edges — subject to the requirement that node v must have exactly d_v edges. A self-loop counts as two edges. Different v may have different d_v values.) Now, suppose that V is partitioned disjointly into sets S_1, S_2, \ldots, S_k, not necessarily randomly. Calculate the expected number X_{ij} of edges between S_i and S_j, and show that X_{ij} is concentrated to within $o(m)$ of this expectation, where $m = \frac{1}{2} \sum_v d_v$ is the total number of edges in the graph.

Problem 3

Suppose that you are given a set of n points in the plane, each representing a patient (the two coordinates could be, say, blood pressure and cholesterol level). Each patient is to be classified as either high-risk for some disease, or low-risk. You are told that there is some line in the plane such that all patient on one side of the line are high-risk, and those on the other side are low-risk. Your goal is to find that line.

In order to help you find the line, you can run extensive tests on a patient, and find out whether he is actually high-risk or low-risk. The test result is always correct. However, as these tests take a lot of time and effort, you want to minimize the number of such tests you perform, and still classify most patients correctly as high-risk or low-risk. In order to save some tests, you are willing to misclassify a small fraction of patients.

Here is what your algorithm is to do. It is given the locations of all n points, but without their “high-risk”/“low-risk” labels. It is also given parameters ϵ and δ. It next runs tests on a number of patients depending only on ϵ and δ, but not on n. Based on the outcomes of those tests (“high-risk” or “low-risk” for

\(^1\)If you find a deterministic constant-factor approximation algorithm, that would also be acceptable.

1
each tested patient), it next classifies all untested patients as “high-risk” or “low-risk”, in time polynomial in $1/\epsilon, 1/\delta$, and n. Here is the guarantee that your algorithm should satisfy: The number of patients that are labeled incorrectly should be at most ϵn, with probability at least $1 - \delta$.

Give a randomized algorithm with these guarantees, and prove its correctness.

Problem 4

Remember that the Hamiltonian Path problem is the following: you are given a graph G (undirected, for our purposes), and are to decide if there exists a path in G that visits each node exactly once. You probably also remember that this problem is NP-complete. So we suspect that there is no polynomial-time algorithm (deterministic or randomized) for this problem.

Here, we are aiming for a much less ambitious lower bound, showing that each randomized algorithm for this problem must take at least $\Omega(n^2)$ steps on an n-node graph. More specifically, we assume that the graph is given by an oracle which we can ask, for any pair (u,v), whether there is an edge between u and v. We only count the number of such questions the algorithm asks the oracle, and give the algorithm all other computation for free.

Prove that any randomized Las Vegas algorithm that always decides correctly whether the graph has a Hamiltonian Path must ask at least $\Omega(n^2)$ questions of the oracle in the worst case.