Problem 1

(a) $\sum_{i=1}^{n} i(i + 1) = n(n+1)(n+2)/3$.

Proof by induction. The base case is $n = 0$, for which both sides evaluate to 0. For the induction step from n to $n+1$, assume that the claim has already been proved for n. We can now write

$$\sum_{i=1}^{n+1} i(i + 1) = \sum_{i=1}^{n} i(i + 1) + (n + 1)(n + 2)$$

$$= n(n+1)(n+2)/3 + (n + 1)(n + 2)$$

$$= n(n+1)(n+2) + 3(n+1)(n+2)$$

$$= (n+3)(n+1)(n+2)/3.$$

The crucial step is the one marked IH: here, we used the induction hypothesis for the sum of the first n terms. The rest is simple arithmetic.

(b) $\sum_{i=1}^{n} ia^i = \frac{na^{n+2}-(n+1)a^{n+1}+a}{(a-1)^2}$.

Proof by induction. The base case is $n = 0$, for which both sides evaluate to 0. For the induction step from n to $n+1$, assume that the claim has already been proved for n. We can now write

$$\sum_{i=1}^{n+1} ia^i = \sum_{i=1}^{n} ia^i + (n + 1)a^{n+1}$$

$$= \frac{na^{n+2}-(n+1)a^{n+1}+a}{(a-1)^2} + (n + 1)a^{n+1}$$

$$= \frac{na^{n+2}-(n+1)a^{n+1}+a + (n+1)a^{n+1}(a^2-2a+1)}{(a-1)^2}$$

$$= \frac{(n+1)a^{n+3}-(2n+2-n)a^{n+2}+a}{(a-1)^2}$$

$$= \frac{(n+1)a^{n+3}+(n+2)a^{n+2}+a}{(a-1)^2}$$

The crucial step is again the one marked IH: here, we used the induction hypothesis for the sum of the first n terms. After that, we simply cancel terms after multiplying out.

Problem 2

Prove that for each n, there is a graph G with n nodes that has at least $(n-1)!$ different spanning trees.

Here, we use induction on n to show that the complete graph with n vertices has at least $(n-1)!$ different spanning trees. The complete graph has edges between every pair of nodes.

The base case is $n = 1$. A graph with one node has no edges, and one spanning tree, namely the node itself. Since $(1-1)! = 0! = 1$, the base case holds.

For the induction step from n to $n+1$, we assume that the claim has already been shown for the complete graph of n nodes. Now we consider the complete graph with $n+1$ nodes. It consists of a complete graph
with \(n \) nodes — call it \(G \) — and one more node — call it \(u \) — which is connected to all nodes of \(G \). By the induction hypothesis, \(G \) as the complete graph on \(n \) nodes contains at least \((n-1)!\) spanning trees. For each such spanning tree — call it \(T \) —, there are \(n \) ways of connecting \(u \) to a node of \(T \) and obtain a new spanning tree. All spanning trees obtained this way are different from each other. For each of the \((n-1)!\) spanning trees of \(G \), we get \(n \) different ones, for a total of \(n! \), completing the proof by induction.

(In case you are curious: \((n-1)!\) is really an underestimate, because we could leave out some edges of \(G \), and connect \(u \) to two or more nodes of \(G \), to obtain yet more different spanning trees.)

Problem 3

Prove formally that for each sequence of breaks, it will take exactly \(mn - 1 \) breaks.

Let \(k \) be a counter over the number of breaks performed. By induction on \(k \), we will prove that never mind what the exact breaks are, after \(k \) breaks, there are exactly \(k + 1 \) pieces of chocolate. When the chocolate bar is completely broken into \(mn \) pieces, therefore, exactly \(mn - 1 \) breaks must have happened.

The base case is \(k = 0 \). After 0 breaks, there is exactly the one original entire chocolate bar. For the induction step from \(k \) to \(k + 1 \), assume (by induction) that we have a sequence of breaks, and after \(k \) breaks, there are exactly \(k + 1 \) pieces. The next break, by the rules of the game, picks up one current piece, and breaks it into two new pieces, without altering the other \(k \) pieces. Thus, the number of pieces increases by exactly 1, and there are \(k + 2 \) pieces afterwards. This completes the inductive proof.

Problem 4

Prove formally that the following program correctly computes the sum of the first \(n \) numbers in the array \(a \).

```plaintext
sum = 0;
for (i = 0; i < n; i++)
    sum = sum + a[i];
```

The key insight is that right before the iteration with value \(i \), \(\text{sum} \) contains the sum of the first \(i \) numbers, i.e., \(\sum_{j=0}^{i-1} a[j] \). We will prove this by induction on \(i \).

For the base case \(i = 0 \), right before the iteration of the loop with \(i = 0 \), by the initialization, we have \(\text{sum} = \sum_{j=0}^{i-1} a[j] \). For the induction step, consider iteration \(i + 1 \). By induction hypothesis, right before the program entered the loop for the \(i \)th time, the value was \(\text{sum} = \sum_{j=0}^{i-1} a[j] \). In the \(i \)th iteration, the value \(a[i] \) was added to \(\text{sum} \), so before entering iteration \(i + 1 \), the value is exactly \(\text{sum} = \sum_{j=0}^{i-1} a[j] + a[i] = \sum_{j=0}^{i} a[j] \). This completes the inductive proof.

Thus, when the loop terminates with value \(i = n \), the value of \(\text{sum} \) is \(\text{sum} = \sum_{j=0}^{n-1} a[j] + a[i] \), i.e., the sum of all array entries.