(1) (a) What does it mean formally when we say that a set X “respects functions”?
(b) What does it mean intuitively?
(c) In general, if f is a function, what does it mean for x to be a fixpoint of f?
(d) In the context of recursion theory, what does it mean, assuming f is a total and recursive function?

(2) Prove that the following sets of programs are undecidable. You can use whatever method you would like to prove it.

(a) $\text{USC} = \{ P | \text{Program } P \text{ outputs 'USC' for each even number } x \}$.
(b) $\text{MST} = \{ P | \text{Program } P \text{ always returns the MST of its input graph } G \}$.
(c) $\text{HALT}^+ = \{ P | \text{Program } P \text{ halts when run on } P, \text{ and contains the statement “}y=x+y+z\text{” somewhere} \}$.

(3) Prove that for every two sets X, Y, there is a third set Z such that $X \leq_m Z$ and $Y \leq_m Z$.

(4) (a) Prove that there is a program P which, when given an input number k, prints its own source code k times.
(b) Prove that there are programs P, P' such that P prints the source code of P', and P' prints the source code of P.