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Abstract

This paper proposes an alternative to the asymptotic principal components procedure
of Connor and Korajczyk (J. Financial Econom. 15 (1986) 373) that is robust to time

series heteroskedasticity in the factor model residuals. The new method is simple to use
and requires no assumptions stronger than those made by Connor and Korajczyk. It is
demonstrated through simulations and analysis of actual stock market data that

allowing heteroskedasticity sometimes improves the quality of the extracted factors
quite dramatically. Over the period from 1989 to 1993, for example, a single factor
extracted using the Connor and Korajczyk method explains only 8.2% of the variation

of the CRSP value-weighted index, while the factor extracted allowing heteroskedas-
ticity explains 57.3%. Accounting for heteroskedasticity is also important for tests of
the APT, with p-values sometimes depending strongly on the factor extraction method
used. r 2001 Elsevier Science S.A. All rights reserved.
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1. Introduction

The appeal of Ross’s (1976) Arbitrage Pricing Theory (APT) rests in large
part on the minimal assumptions necessary to derive it: that there are many

Nomenclature

T number of sample time periods
K number of factors
N number of firms (in sample)
n number of firms (asymptotic index variable)
dt average idiosyncratic variance at time t
%d average dt
f kt time t realization of the kth rotated factor (the (k; t) element of F)
ht K�1 vector of time t unrotated factor (the tth column of H)
rnt n�1 vector of time t excess returns
ent n�1 vector of time t idiosyncratic errors
gt K�1 vector of time t factor risk premia
B N�K matrix of factor betas
#B N�K estimate of B
Bn n�K matrix of factor betas
D T�T diagonal matrix of average idiosyncratic variances
#D T�T estimate of D
E N�T matrix of idiosyncratic errors
En n�T matrix of idiosyncratic errors
F K�T matrix of rotated realizations of factors (M21=2H)
*F K�T estimate of F
#F K�T orthonormalized transformation of *F
H K�T matrix of realizations of (unrotated) factors
M probability limit of ð1=nÞBn0Bn

R N�T matrix of excess returns
Rn n�T matrix of excess returns
Rm m�T matrix of excess returns, where some values are missing
Im m�T matrix indicating what values of Rm are non-missing
R2 the average of K R-squares
R2 the minimum of K R-squares
Xn ð1=nÞH 0Bn0BnH
Yn ð1=nÞH 0Bn0En

Zn ð1=nÞEn0En

O N�N diagonal matrix of unconditional idiosyncratic variances
#O N�N estimate of O
Rn
t n�n conditional covariance matrix of time t residuals
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assets, that trading is costless, and that a factor model drives the returns
generating process. To analyze the model empirically, however, one must
impose additional structure. First, as Shanken (1982) emphasizes, obtaining an
exact rather than approximate factor pricing relation requires an assumption
about market equilibrium. One example is Chamberlain’s (1983) assumption
that the tangent portfolio is well-diversified. Second, some assumptions that
ensure statistical identification are necessary. Possibilities include assuming the
constancy of factor betas or selecting a particular set of factors, as was done in
the well-known paper by Chen et al. (1986).
While prespecifying factors is a natural first step for investigating the sources

of priced risks, it not an obvious starting point for tests of market efficiency.
Because the APT is silent on what the factors driving returns are,
prespecification of the factors leads to a joint test of market efficiency and
the particular set of factors chosen.
Fortunately, numerous papers have de demonstrated that prespecifying the

factors is an unnecessary step in testing the APT. One strategy is to assume that
returns are Gaussian, that their covariances are constant, and that all
comovement in asset returns can be attributed to factor movements. Given
these restrictions, it is possible to use maximum likelihood factor analysis to
estimate factor loadings. Roll and Ross (1980) used these loadings to test exact
APT pricing with constant factor risk premia using simple cross-sectional
regression tests, while Lehman and Modest (1988) use a more sophisticated
factor decomposition algorithm to consider much larger cross-sections of
returns under the same assumptions.
The normality of returns and the diagonal covariance matrix assumed in

these papers is, however, neither empirically likely nor a theoretical
requirement of the APT. Extending the results of Chamberlain and Rothschild
(1983), Connor and Korajczyk (1986) introduced a novel method for factor
extraction, which they called asymptotic principal components. The procedure
avoids the undesirable diagonality assumption and is not likelihood-based, so
it allows for non-Gaussian returns. In addition, the Connor and Korajczyk
approach lends itself naturally to the consideration of time-varying factor risk
premia.
The Connor and Korajczyk method remains popular in empirical finance

and economics. Recent applications of the method include papers by Brennan
et al. (1998), Brown et al. (1998), Chan et al. (1998, 1999), Elton (1999), Elton
et al. (1998), Ferson and Korajczyk (1995), Jagannathan and Ma (2001),
Levine and Zervos (1998), McCulloch and Rossi (1990, 1991), and Pastor and
Stambaugh (1999).
Although significantly less restrictive than maximum likelihood factor

analysis, the Connor and Korajczyk method maintains the assumption that the
covariance matrix of the factor model residuals is constant through time. Of
course, evidence against homoskedasticity in aggregate equity returns is
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immense. French et al. (1987) observe that market volatility makes large and
persistent deviations from its long-run mean, while Schwert (1990) notes that
short-term movements in market volatility can be even more severe. Although
time series heteroskedasticity in the idiosyncratic component of the returns of
less diversified portfolios or individual firms is not as extensively documented,
several studies suggest this is an empirical regularity as well. Schwert and
Seguin (1990) find evidence that the volatilities of size-ranked portfolios exhibit
movements that are independent of aggregate stock market volatility, while in
a firm-level analysis Campbell et al. (2001) find that the volatilities of
individual firms have market, industry, and idiosyncratic components, and that
all three exhibit substantial time variation. Furthermore, firm level volatility
dynamics are correlated, so that the average idiosyncratic variance across firms
can change considerably from one month to the next.
Even without the results of Campbell et al. (2001), it would be compelling to

think that at least some changes in aggregate volatility are associated with
shifts in average residual volatility as well. With their results, however, it seems
more clear that residuals are not as well-behaved as has been assumed. If this is
the case, then Connor and Korajczyk’s method is no longer valid, and we
should expect the resulting factor estimates to explain neither the time
variation in realized returns nor the cross-sectional variation in expected
returns.
This paper demonstrates that accounting for residual heteroskedasticity is

both important and straightforward. The method of Connor and Korajczyk
(1986, hereafter CK), while adequate in many instances, often appears to
severely misestimate the true latent factors, particularly in data from the last 10
years. The alternative proposed here, which I will call heteroskedastic factor
analysis (HFA), is almost as easy to implement, requires no additional
assumptions to those in CK, and is shown to generally outperform the CK
method.
Section 2 of the paper will describe the method in detail and compare it with

that of CK. Relative performance of the heteroskedastic factor analysis and
CK methods is evaluated in Section 3 through a simple simulation study. The
performance of the two methods in explaining actual stock market data is
assessed in Section 4. Section 5 examines some basic implications for tests of
the APT, while Section 6 concludes.

2. Heteroskedastic factor analysis

The central convergence result of CK states that given a large enough set of
assets returns whose residuals are sufficiently uncorrelated, the realizations,
over a fixed time period, of the unobserved factors (up to a nonsingular
translation) may be recovered to any desired precision. This enables CK to test
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the APT as though the true factors were known. In this section I review this
result and show that a similar convergence result may be obtained in the case of
residual heteroskedasticity.

2.1. Extracting the factors

Following CK, I assume a countably infinite set of assets. Under the
equilibrium version of the APT (see Connor, 1984), the APT pricing relation
holds exactly, so that for the first n assets we have

rnt ¼ Bnht þ ent ; ð1Þ

E½ht� ¼ gt; ð2Þ

E½ent
��ht� ¼ 0; ð3Þ

E½ent e
n0

t � ¼ Sn
t ; ð4Þ

where rnt is the n�1 vector of excess returns at time t;B
n is the n�K matrix of

factor loadings, ht is the K�1 vector of time t factor realizations, gt is the K�1
vector of time t factor risk premia, and ent is the time t n�1 vector of serially
uncorrelated residuals.
Following Connor and Korajczyk, I will stack T columns together and

rewrite Eq. (1) in matrix form,

Rn ¼ BnH þ En; ð5Þ

in order to analyze the convergence of the T � T matrix ð1=nÞRn0Rn; which is
equal to

1
nH

0Bn0BnH þ 1
nH

0Bn0En þ 1
nE

n0BnH þ 1
nE

n0En

	 Xn þ Yn þ Yn0 þ Zn: ð6Þ

As in Connor and Korajczyk (1986) I assume that the matrix ð1=nÞBn0Bn has
a probability limitM; implying that Xn converges toH 0MH: I also assume that
M is full rank. It is notationally more economical to write this limit instead as
F 0F ; where F 	 M1=2H is the set of factors that would yield an equivalent
realization of returns were the factor betas equal to BnM21=2: Since factors and
betas are rotationally indeterminate, changing the object of our estimation
from H to F is inconsequential, so the remainder of the paper focuses on the
estimation of F :
Assumption 7 of Connor and Korajczyk (1986), along with the assumed

independence of the factors and residuals, allows the law of large numbers to
be invoked for the Yn and Yn0 terms. Because the residual vector ent is mean
zero, these two terms have probability limits of zero.
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Their assumption 10 states that there exists an average residual variance and
that it is constant through time. I relax this assumption in a minor but critical
way. I still require that there exists an average idiosyncratic variance in each
period, but I allow this quantity to change freely from one period to the next.
Since residuals are still not serially correlated, the strong large law of numbers
can again be invoked to show that the probability limits of the off-diagonal
elements of Zn are zero. Formally,

plim
n-N

1

n
ens e

n
t ¼ 0 ð7Þ

for sat:
The tth diagonal element of Zn; given by ð1=nÞent e

n
t ; converges to the average

idiosyncratic variances in period t; so we define

dt ¼ plim
n-N

1

n

Xn

i¼1

Sn
t ði; iÞ: ð8Þ

The probability limit of Zn can therefore be written as a diagonal matrix D;
where Dðt; tÞ ¼ dt: Under the original Connor and Korajczyk assumptions,
ds ¼ dt; so D could be written as d I : So while ð1=nÞRn0Rn converged to the
matrix F 0F þ d I under the CK assumptions it converges instead to the
somewhat less restricted F 0F þD under my modified assumptions.
It should be noted that some forms of time series heteroskedasticity in return

residuals are not incompatible with the Connor and Korajczyk assumptions. In
particular, if idiosyncratic volatilities evolve independently across firms, then
the average variance across a large sample of firms will still remain constant. It
is only when the dynamics of idiosyncratic variances have a common
component (as Campbell et al., 2001, find empirically) that their average will
exhibit time variation.
The cost of generalizing the assumption of constant variances is that the

matrix F can no longer be recovered by simply computing the eigenvectors of
the cross-product matrix, F 0F þD; as it could be in the Connor and Korajczyk
setup. Fortunately, other methods for decomposing the more general for into
its components F and D are well known. The estimation procedure of Joreskog
(1967), for instance, can be used to compute the maximum likelihood estimate
of the matrix B from the sample covariance matrix of Rt: While this estimator
cannot be used when n is large relative to T or when the residual covariance
matrix is nondiagonal, the computational algorithm proposed by Joreskog will
be used here.
In the maximum likelihood factor analysis of Joreskog, the residuals ent are

assumed independent and identically distributed through time, and the factor
risk premia are assumed constant. The covariance matrix of returns then has a
probability limit of B0Bþ O; where O is now the assumed diagonal residual
covariance matrix and where, without loss of generality, Covð ft; f 0t Þ ¼ I :
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Joreskog’s iterative algorithm recovers the maximum likelihood estimates of
B and O: The consistency of MLE implies that as the estimated covariance
matrix approaches its probability limit, B0Bþ O; the resulting estimates of B
must converge to the true B matrix.
Because the probability limit of the cross-product matrix (which does allow

for heteroskedasticity, residual correlations, and time-varying risk premia) is
F 0F þD; which has the same for as Joreskog’s covariance matrix, the same
iterative procedure that Joreskog used to extract B can be used here to extract
F : This procedure follows several steps:

1. Compute the cross-product matrix ð1=nÞRn0Rn and denote it as C:
2. Guess an initial estimate, #D; of the diagonal matrix D:1

3. Collect the K eigenvectors corresponding to the K largest eigenvalues of the
matrix #D

21=2
C #D

21=2
:2 Let L be the diagonal matrix with the K largest

eigenvalues on the diagonal, arranged in descending order. Denote the
matrix of eigenvectors by V ; where the ith column of V is the eigenvector
corresponding to the ith diagonal element of L:

4. Compute an estimate of the factor matrix *F as #D
1=2

VðL2IÞ1=2.
5. Compute a new estimate #D as the diagonal of C2 *F 0 *F:
6. Return to 3 to iterate again or terminate the process if estimates have
converged.3

Finally, to facilitate comparison with the Connor and Korajczyk factors,
which are naturally written as an orthonormal collection, I transform the
extracted factors *F into an orthonormal set #F: The first column of the
transformed factor matrix #F is set equal to the normalized first column of *F:
For every 1okpK ; I regress *Fk on #F1 through #Fk21 (without an intercept) and
set #Fk equal to the normalized residual of this regression. This produces a
T � K matrix #F for which #F

0 #F ¼ I :

2.2. Firms with missing observations

Although the procedure described can potentially make use of extremely
large cross sections of firm-level returns data, it is limited by the requirement
that each firm in the sample have no missing observations. Connor and
Korajczyk (1987) show, however, that it is fairly straightforward to
incorporate firms that are only observed for a part of the sample, and their

1 In this paper I use the 0.5 times the diagonal of C; implying that half the return variance comes
from the idiosyncratic component.
2Since eigenvectors will be computed only from symmetric matrices, we may assume without loss

of generality that all eigenvectors extracted from such matrices for an orthonormal set.
3As discussed in Knez et al. (1994) it is possible for the algorithm to result in an estimate #D that

contains some negative elements. In the applications in this paper, this problem does not occur.
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results are generally supportive of the value of this modification of their
original procedure. The same approach to missing data can be adopted when
residuals are assumed heteroskedastic.
Following their exposition, let m denote the total number of firms with some

returns data observed within the sample period. Let Rm denote the m� T
matrix of excess returns, where all missing values are replaced by zeros, andIm

the m� T indicator matrix containing a one wherever the corresponding
element of Rm is nonmissing and zero otherwise. If all of the returns in Rm are
generated according to Eq. (1), the limit of ðRm0

RmÞCðIm0
ImÞ is identical to

that of ð1=nÞRn0Rn; where C denotes element-by-element division.4

When there are no systematic differences between the firms with missing
observations and those with none, then we would expect the elements of
ðRm0

RmÞCðIm0
ImÞ to be computed with lower variance because of the larger

data sample used. As Connor and Korajczyk (1987) discuss, however, this is
not necessarily the case, especially since the firms with missing observations are
more likely to be small. Because small firm returns are often highly volatile,
incorporating more of them could possibly increase the variance of the
resulting estimator.
It is also possible that changing the composition of firms mid-sample could

induce average idiosyncratic variances to change even though individual firm
residuals are homoskedastic. Evidence presented in Safdar (2000) suggests that
this is likely. Maintaining a constant sample of firms should therefore lessen the
relevance of the method introduced in this paper. Since most results will be
presented for data samples without missing observations, the importance of
accounting for residual heteroskedasticity may sometimes be understated.

2.3. Data

Data used in the paper consist of excess returns on stocks traded on the
NYSE, Amex, and Nasdaq exchanges as recorded in the CRSP monthly stock
file. Following Connor and Korajczyk (1988), I consider a number of five-year
intervals, with the first interval (1979–1983) corresponding to the last one
considered by Connor and Korajczyk.
Five-year intervals were chosen for several reasons. First, different time

periods display very different patterns of market and firm-level volatility, as
shown by Campbell et al. (2001). To the extent that changes in volatility
regimes influence the efficacy of one extraction method over another, using
four separate intervals should provide some evidence for the robustness of each
method. Second, the relatively short five-year intervals should minimize
violations of the assumption that the betas are constant and should reduce the

4Observe that if all returns are observed, then Im is an m� T matrix of ones, and that Im0
Im

will be a T � T matrix where each element is equal to m:
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severity of the survival bias caused by including only firms with no missing
data.
In addition, I will also consider the 20-year sample that merges the smaller

intervals. Because the vast majority of firms have an incomplete time series of
returns over this period, the data set of firms with no missing observations is
relatively small. I therefore attempt to improve the factor extraction over this
period by also using a sample that also contains returns of firms with missing
observations.
Table 1 shows that the five-year intervals differ in several ways. Panel A

shows that the number of firms traded in these markets has generally increased
over the past 20 years, with the greatest increases coming from Nasdaq. In the
1979–1983 sample, Nasdaq stocks comprised 35% of the sample, growing to
48% by 1994–1998.
In the 20-year samples, requiring a full time series of returns restricts the

sample to just 1281 firms. If missing observations are allowed, then the sample
grows dramatically, with over 19,000 firms contributing some returns data to
the analysis. Because they have missing values, the number of observations
increases more moderately as these firms are added, but the expanded data set
still averages roughly five times the number of returns per month as the sample
with no missing observations. The table also shows that most of these
additional firms are traded on Nasdaq, making the composition of the larger
sample much different from the sample without missing observations, which is
comprised primarily of much larger firms.
Panel B of Table 1 shows that these changes in the composition of the sample

have coincided with an increase in the level of residual heteroskedasticity.
Assuming either one, three, six, or 12 factors, the factor extraction procedure
described above was used to produce an estimate of D: The square roots of the
60 or 240 months of estimated average idiosyncratic variances (the diagonal
elements of D) were then used to compute the standard deviation of

ffiffiffiffi
dt

p
:

This measure of residual heteroskedasticity is about 2.5 times higher over the
1989–1993 interval than it is for 1979–1983 or 1984–1988, suggesting that
violations of the homoskedasticity assumption have become more relevant
since the Connor and Korajczyk (1986, 1988) papers were written.
Interestingly, heteroskedasticity is lowest for the relatively select 20-year

sample of firms with no missing observations, but it is relatively large over
the same period when firms with missing observations are included. This
suggests that changes in average residual variance are primarily due to
the addition of new firms to the sample, a finding consistent with Safdar
(2000).
Finally, Panel C reports the autocorrelations of

ffiffiffiffi
dt

p
: As in other studies,

volatility is persistent, with autocorrelations ranging from 0.21 to 0.5. Since the
asymptotic standard error given a null of zero autocorrelation is at most 0.13,
most of these correlations are statistically significant at 5% levels.
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2.4. Measuring the equivalence of two sets of factors

Many of the results in this paper concern the equivalence of two sets of
factors. In some cases, the two sets consist of a set of true factors and a set of

Table 1

Descriptive statistics

The primary data set is comprised of firms from NYSE, Amex, and Nasdaq over the 20-year period

from 1979 to 1998. Four five-year subsamples are considered in which a firm is included as long as

it has a complete set of returns over that interval. In addition, a 20-year sample is formed of firms

that have 20 complete years of returns data. Finally, a 20-year sample of all firms, including those

with missing observations, is denoted by the m superscript. Panel A describes the number of firms in

each one of the samples. In order to measure of the degree of residual heteroskedasticity in each

sample, the heteroskedastic factor extraction algorithm of Section 2.1 was applied to each sample

for various values of K (the number of factors). The time series dt; which is an output of that
algorithm, measures the average residual variance across firms in each period. The standard

deviation of
ffiffiffiffi
dt

p
; reported in Panel B, provides a summary statistic of the variability of average

residual variance. Panel C, which reports the autocorrelation of
ffiffiffiffi
dt

p
; summarizes the peristence of

average residual variance.

Panel A Number of firms

Total NYSE Amex Nasdaq

1979–1983 3340 1647 524 1169

1984–1988 3619 1510 445 1664

1989–1993 4364 1765 531 2068

1994–1998 4792 2026 472 2294

1979–1998 1281 889 124 268

1979–1998m 19,144 4736 2101 12,307

Panel B Standard deviation of
ffiffiffiffi
dt

p

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

1979–1983 1.88 1.78 1.80 1.79

1984–1988 1.90 1.88 1.81 1.70

1989–1993 5.20 5.02 4.97 4.49

1994–1998 2.66 2.68 2.64 2.57

1979–1998 1.79 1.74 1.69 1.56

1979–1998m 3.87 3.87 3.82 3.72

Panel C Autocorrelation of
ffiffiffiffi
dt

p

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

1979–1983 0.48 0.49 0.47 0.50

1984–1988 0.38 0.32 0.33 0.36

1989–1993 0.25 0.22 0.21 0.22

1994–1998 0.43 0.43 0.41 0.42

1979–1998 0.44 0.42 0.43 0.43

1979–1998m 0.49 0.49 0.49 0.50
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estimates, while in other cases both sets are estimates. I will be principally
interested in whether the two sets of factors have the same span, or whether the
two sets explain the same variation in stock returns, and I will measure this by
regressing one set on the other and calculating the regression R-squares.
There are several ways one might do this. When comparing two sets of K

factors, for example, one option would be to regress the first factor from the
first set on the first factor of the second set, then regress the second factor from
the first set on the second factor of the second set, and so on. Of course, if the
two sets of factors were identical but arranged in different orders this procedure
could return R-squares of zero, implying zero equivalence when in fact the
spanning of the two sets is identical. A better measure of equivalence would
therefore be calculated by regressing each factor in the first set on all the factors
of the second set. If all the R-squares are close to one then the equivalence of
the two sets of factors would be considered very high.
Because the comparison of two sets of factors involves running K

regressions, I will reduce the quantity of numerical results by reporting only
the average ðR2Þ and the minimum ðR2Þ of the K R-squares. The average is
intended to summarize the overall equivalence of the two sets, while the
minimum focuses more on the ‘‘marginal factor’’ that is hardest to detect in the
data. Reporting the minimum is intended to highlight whether, as the number
of factors is increased, the accuracy with which the additional factors are
estimated is too low to make them of any benefit.
When measuring the equivalence of a set of extracted factors and a set of

‘‘true’’ factors, I will always place the true factors on the left hand of the
regression, thereby focusing on the ability of the extracted factors to span the
true ones. From an econometric perspective, this choice is counterintuitive,
since it is the extracted factors that are measured with error. From the
standpoint of asset pricing theory, however, this choice reflects the result that if
the factor proxies span the true factors, then a linear expected return relation
will hold using either the proxies or the true factors. The reverse, however, is
not true.

3. A simulation study

Extraction of the true factors is at best only approximate, since two key
results are valid only asymptotically. First, as in Connor and Korajczyk, the
cross-product matrix only converges to its probability limit as the number of
assets N grows large. Second, even given the true cross-product matrix, the
decomposition procedure of Joreskog is iterative, with any feasible solution
being an approximation of the iterative limit.
In this section I address, through the use of simulations, the degrees with

which these approximations are likely to be valid in the data sets commonly
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used by researchers in empirical asset pricing. I seek to assess the performance
of the current method and that of Connor and Korajczyk under alternative
data generating processes by altering assumptions about residual hetero-
skedasticity and by changing the properties of the generated returns to reflect
differences between the data samples described in Table 1.
Because a realistic model of how firms are added and deleted from the

sample is not obvious, I restrict attention in this section to the cases in which
firms have no missing observations. Since Table 1 indicates that the addition of
firms with missing observations may contribute to heteroskedasticity, the
experiments below may lessen the relevance of the HFA approach.

3.1. The simulation algorithm

The data generating processes (DGP) used in the simulations are designed to
mimic the actual data as closely as possible. Rather than simulating factors
under some arbitrary assumptions, bootstrap samples of factor estimates
extracted from the actual data are used as the true factors in the simulations.
Given estimates of the T � K matrix #F of factor realizations and the T � T
diagonal matrix #D of average residual variances, I sample (with replacement) T
rows of #F and the corresponding diagonal elements of #D to use as the true
factors and average residual variances in the simulations. Let Fi denote the ith
bootstrap draw of the factor matrix and Di the corresponding draw of the D
matrix.5

All alphas are assumed to be zero in the simulations. The factor betas
assumed in the DGP will be bootstrap samples of the least squares estimates of
the betas from the actual data, and are assumed constant over time. If #B is the
N � K matrix of OLS estimates of the factor betas from real data, I draw with
replacement N rows of the #B matrix to use as the true betas in the simulations.
In addition, I draw the corresponding elements of the N �N diagonal matrix
#O; whose (n; n) element is the unconditional sample variance of the residual of
stock n: Let Bi denote the ith bootstrap draw of the beta matrix and Oi the
corresponding draw of O .
Two scenarios are considered in the simulations. In the first, I assume that

residuals are homoskedastic, and I apply the CK method to extract factor
estimates ð #F

CK
Þ from each of the samples described in Table 1. The beta

estimates ð #B
CK

Þ and residual variances ð #O
CK

Þ used in the simulations come
from the OLS regression of excess stock returns on these factor estimates.
Using the bootstrap draws ðFi;Bi; andOiÞ; from these estimates, the N � T
matrix of simulated excess returns Ri will then be generated by the equation

Ri ¼ BiFi þ O1=2i Ei; ð9Þ

5 If the factors are constructed under the assumption of homoskedastic errors, no #D matrix is

produced, so I skip this step.
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where O1=2i is the Cholesky factor of Oi and Ei is an N � T matrix of
independent standard normals.6

In the second scenario, residuals are assumed to display heteroskedasticity,

and so the factor estimates ð #F
HFA

Þ and average idiosyncratic variance matrix
ð #DÞ are extracted using the heteroskedastic factor analysis procedure with 100

Joreskog iterations. Corresponding beta estimates ð #B
HFA

Þ and residual

variances ð #O
HFA

Þ come from the OLS regression of returns on the factor
estimates. Now using the bootstrap draws (Fi;Di;Bi; and Oi) from these
estimates, excess returns are generated by

Ri ¼ BiFi þ O1=2i En
i ; ð10Þ

where the matrix En
i is an N � T matrix of independent, zero mean, but now

heteroskedastic normal random variables. Specifically, if di;t is the (t; t) element

of Di and %di ¼ ð1=TÞSTt¼1di;t; then the tth column of E
n
i has variance di;t= %di: On

average, therefore, a stock’s residual variance will be given by the appropriate
element of Oi; but this variance will change over time as suggested by the
draw Di:

3.2. Convergence of the Joreskog iteration

The first experiment attempts to assess the convergence of the Joreskog
iteration. Since the iterative method is only necessary when residuals are
heteroskedastic, I generate five thousand artificial return data sets under the
second scenario, in which the true factors and betas are constructed using data
from 1994 to 1998 and the number of factors is assumed to be either one, three,
six, or 12. Each simulated data sample therefore consists of 60 monthly
observations of returns on 4792 firms.
I assume in all cases that the true number of factors is known, so from each

set of artificial returns that is generated, the correct number of factors is
extracted using the HFA method. These extracted factors are then used as
regressors, along with an intercept, in a set of regressions with the true factors
as the dependent variables. Assume that the true number of factors is K ; and let
f ki;t denote the kth true factor at time t; or the (k; t) element of Fi: Let #f ki;t(iter)
denote the time-t estimate of the kth factor extracted with iter iterations.
To assess convergence of the estimates as the number of iterations is

increased, I run K time series regressions for each bootstrap sample i:

f ji;t ¼ d0 þ
XK

K¼1

dk #f ki;tðiterÞ þ xt ð11Þ

6Recall that O is a diagonal matrix, so the (n; n) element of the Cholesky factor is just the
estimated residual standard deviation of the nth firm in the sample.
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for j ¼ 1;y;K : For each set of regressions, the average ðR2iÞ and minimum
ðR2iÞ of the K R-squares are calculated.
The means of these statistics calculated across all bootstrap draws are

tabulated in Table 2 as a function of the number of Joreskog iterations. The
standard errors of all mean estimates are below 0.001. Because of sampling
error, both statistics should have averages below unity, but they are fairly close
to unity in all cases. When a single factor is extracted, a single iteration of the
algorithm is adequate, but for K > 1 both average R-squares ðR2Þ and
minimum R-squares ðR2Þ increase noticeably as the number of iterations is
increased from one to three. Increasing the number of iterations beyond five

Table 2

Convergence of the Joreskog iteration

Five thousand return data sets are simulated under the assumption that residuals are

heteroskedastic and the number of factors, K ; is either one, three, six, or 12. Each simulated
sample consists of 60 monthly observations of returns on 4792 firms, consistent with the size of the

1994–1998 subsample. Factors are then extracted from these returns using the heteroskedastic

factor extraction method of Section 2.1, where the number of iterations (iter) of the algorithm is

varied from one to 100. The extracted factors, #f ki;tðiterÞ; are then used as regressors in the following
set of regressions in which the true factors, #f ki;t; are the dependent variables:

f ji:t ¼ d0 þ
XK

k¼1

dk #f ki;tðiterÞ þ xt

for j ¼ 1;y;K : For each of the simulations, the average ðR2 iÞ and minimum ðR2 iÞ of the K

R-squares are calculated. Higher values of R2 i and R2 i indicate better spanning of the true factors

by the extracted ones. The average values of these statistics are reported in Panels A and B,

respectively.

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

Panel A Mean of R2 i
1 Iteration 0.992 0.947 0.956 0.963

3 Iterations 0.993 0.949 0.964 0.974

5 Iterations 0.993 0.949 0.964 0.974

10 Iterations 0.993 0.949 0.965 0.974

25 Iterations 0.993 0.949 0.965 0.975

100 Iterations 0.993 0.949 0.965 0.975

Panel B Mean of R2 i
1 Iteration 0.992 0.888 0.903 0.892

3 Iterations 0.993 0.895 0.925 0.932

5 Iterations 0.993 0.895 0.925 0.934

10 Iterations 0.993 0.895 0.925 0.935

25 Iterations 0.993 0.895 0.925 0.936

100 Iterations 0.993 0.895 0.925 0.937
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yields extremely small benefits, suggesting that allowing too few iterations is
unlikely to be a source of substantial approximation error.
Because there is virtually no improvement in performance beyond five

iterations, this value will be used in all subsequent calculations.

3.3. Do extracted factors span the true factors?

The second simulation exercise expands on the issue of how well the
estimated factors would explain the true factors, were they observed. Five
thousand sets of artificial returns will be simulated both assuming homo-
skedasticity (scenario 1) and assuming heteroskedasticity (scenario 2). In
addition, because the degree of heteroskedasticity has changed over time (see
Table 1), the DGP is further varied by using the four different five-year
subperiods as well as the single 20-year period to construct the true factors,
factor loadings, and residual variances. As before, I consider the cases of one,
two, six, and 12 factors.
For each simulated data set, both the CK and HFA methods will be used to

extract factors. The simulations will therefore reveal how well the CK
procedure performs when residuals are heteroskedastic, as well as how the
HFA procedure performs when they are not.
As in the previous exercise, I report statistics on the average and minimum

R-squares of the K regressions of the true factors on the extracted factors,

f ji;t ¼ d0 þ
XK

K¼1

dk #f ki;t þ xt ð12Þ

for j ¼ 1;y;K ; where #f ki;t may come out of either the CK or HFA procedure.
High average and minimum R-squares indicate that the true factors of the
DGP are spanned by the factor estimates.
Table 3 presents the results for five different time periods, 1979–1983, 1984–

1988, 1989–1993, 1994–1998, and 1979–1998. Panel A explores the homo-
skedastic first scenario, in which returns are generated according to Eq. (9),
while Panel B reports on the heteroskedastic DGP given by Eq. (10). If the
mean R2 or R2 for one method is higher than that of the other method by 0.01
or more, the mean of the superior method appears in bold face type. Standard
errors in this table are extremely small, and all bold faced means are at least 25
standard errors higher than the mean of the competing method.
Panel A shows in almost every case that the performance of the two methods

is very similar when residuals are homoskedastic. In three out of the four five-
year samples and for the 20-year sample, this performance is very good, while
the 1989–1993 period presents somewhat of a problem for the HFA method.
While the HFA procedure is considerably worse in extracting the first factor in
this period, for higher factors the performance of the two methods is identical.
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Table 3

Simulation performance of extracted factors in spanning true factors

Five thousand return data sets are simulated with either one, three, six, or 12 factors under various

assumptions about residual heteroskedasticity. Each simulated sample consists of a set of monthly

returns that has the same number of months and number of firms as the actual sample of data

observed over the time interval listed. Factors are then extracted from these returns using the

Connor and Korajczyk (1986) procedure (CK) and the heteroskedastic factor extraction method of

Section 2.1 (HFA). Each set of extracted factors, #f ki;t; is then used as the set of regressors in the
following set of regressions in which the true factors, f ki;t; are the dependent variables:

f ji;t ¼ d0 þ
XK

k¼1

dk #f ki;t þ xt

for j ¼ 1;y;K : For each of the simulations, the average ðR2 iÞ and minimum ðR2 iÞ of the K

R-squares are calculated. Higher values of R2 i and R2 i indicate better spanning of the true factors

by the extracted ones. The average values of these statistics are reported in the table. Panel A uses

returns simulated under Scenario 1, in which residuals are homoskedastic, while Panels B and C

consider Scenario 2, where residuals are heteroskedastic. Panel C differs from Panel B in its use of

the block bootstrap to capture serial dependence in average residual variance. Bold face type

indicates a value that is higher than the corresponding value of the competing method by 0.01 or

more.

Extracted using CK Extracted using HFA

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12 K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

Panel A Scenario 1:

Returns simulated with homoskedastic residual

Mean of R2 i

1979–1983 0.998 0.962 0.972 0.979 0.998 0.961 0.972 0.978

1984–1988 0.997 0.939 0.961 0.975 0.997 0.938 0.961 0.974

1989–1993 0.766 0.959 0.964 0.975 0.641 0.958 0.963 0.975

1994–1998 0.992 0.957 0.970 0.980 0.992 0.957 0.970 0.979

1979–1998 0.995 0.835 0.846 0.869 0.995 0.834 0.846 0.868

Mean of R2 i

1979–1983 0.998 0.933 0.946 0.953 0.998 0.932 0.945 0.951

1984–1988 0.997 0.893 0.923 0.942 0.997 0.892 0.921 0.941

1989–1993 0.766 0.909 0.933 0.944 0.641 0.908 0.932 0.942

1994–1998 0.992 0.925 0.941 0.954 0.992 0.924 0.940 0.951

1979–1998 0.995 0.671 0.741 0.780 0.995 0.670 0.740 0.779

Panel B Scenario 2:

Returns simulated with heteroskedastic residuals

Mean of R2 i

1979–1983 0.997 0.869 0.883 0.879 0.998 0.965 0.973 0.969

1984–1988 0.996 0.903 0.935 0.934 0.997 0.951 0.968 0.976

1989–1993 0.709 0.691 0.751 0.930 0.815 0.838 0.959 0.972

1994–1998 0.978 0.919 0.926 0.940 0.993 0.949 0.964 0.974

1979–1998 0.995 0.805 0.816 0.833 0.995 0.831 0.849 0.871
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It is somewhat puzzling in this case that the HFA method extracts the higher
order factors more accurately than it does the first factor.
In the Panel B, in which residuals are heteroskedastic, the HFA procedure is

clearly superior, with mean R2 and R2 that are universally higher, many by a
wide margin, particularly for K=6 and 12. In addition, many of the lowest
R-squares occur in the two more recent five-year samples and in the 20-year
sample, more evidence that residual heteroskedasticity may be more of a
problem today than it was when the Connor and Korajczyk papers were
written.
A weakness of the bootstrap experiments thus far is that they have ignored

serial dependence in factors and residuals, and therefore may generate
unrealistic sampling distributions of the two goodness of fit measures.7

Volatility persistence, as reported in Table 1, is a primary example of such

Table 3 (continued)

Extracted using CK Extracted using HFA

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12 K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

Mean of R2 i

1979–1983 0.997 0.736 0.682 0.518 0.998 0.937 0.947 0.861

1984–1988 0.996 0.816 0.837 0.769 0.997 0.913 0.935 0.940

1989–1993 0.709 0.469 0.480 0.725 0.815 0.719 0.918 0.904

1994–1998 0.978 0.846 0.816 0.789 0.993 0.895 0.925 0.934

1979–1998 0.995 0.641 0.669 0.646 0.995 0.698 0.749 0.774

Panel C Scenario 2:

Returns simulated with heteroskedastic residuals, Block bootstrap

Mean of R2 i

1979–1983 0.997 0.923 0.897 0.934 0.998 0.961 0.964 0.973

1984–1988 0.996 0.913 0.942 0.946 0.997 0.951 0.968 0.973

1989–1993 0.695 0.732 0.644 0.849 0.801 0.943 0.968 0.975

1994–1998 0.985 0.739 0.812 0.899 0.993 0.954 0.970 0.957

1979–1998 0.995 0.775 0.839 0.846 0.995 0.810 0.863 0.878

Mean of R2 i

1979–1983 0.997 0.866 0.660 0.792 0.998 0.935 0.903 0.917

1984–1988 0.996 0.836 0.868 0.827 0.997 0.915 0.938 0.921

1989–1993 0.695 0.517 0.181 0.475 0.801 0.890 0.921 0.921

1994–1998 0.985 0.451 0.500 0.427 0.993 0.916 0.944 0.734

1979–1998 0.995 0.598 0.622 0.672 0.995 0.674 0.700 0.769

7 I am grateful to Bob Korajczyk for this observation.
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dependence, and is clearly not captured in the previous experiments due to the
independence of the 60 or 240 draws of dt: Panel C of Table 3 therefore uses a
block bootstrap algorithm to capture some of the serial dependence in the data.
Rather than using serially independent draws of Ft and the corresponding dt; I
now draw five or 20 complete calendar years of Ft and dt; again with
replacement. The results using this block bootstrap procedure are qualitatively
unchanged, as the HFA method consistently outperforms CK.
Performance over the 20-year sample is generally worse than the average

performance across the four subperiods, except that in all cases there are no
problems with either method extracting the first factor. Reflecting the result
from Table 1 that the degree of heteroskedasticity for this sample is low, the
differences between the CK and HFA methods are never particularly large.
Because the number of firms in the 20-year sample is low, however, the
extracted factors from both methods are generally mediocre, suggesting that it
might be preferable to use shorter sample periods or to make use of firms with
missing observations.

4. Explaining actual returns data

While the results of the previous section demonstrated that the HFA method
could be useful in situations where the CK method performed poorly, the
results relied on somewhat stylized data generating processes. Among other
limitations, these DGPs assumed the independence of residuals across firms, a
simplification that is no doubt at odds with the data.
Rather than present more simulation evidence, this section seeks to assess

the performance of each method in explaining actual returns data. First, I
perform a cross validation exercise in which factors extracted from half of the
firms in the sample are used to explain factors extracted from the other half.
Next, I show how well factors extracted using each method explain the returns
of some commonly-used benchmark portfolios.

4.1. A cross validation exercise

If the factors extracted from one set of returns are not spurious, then they
should have power to explain factors extracted from the returns of a different
set of securities. I investigate this property in a very simple cross validation
exercise. In each of the six data samples, firms are split randomly into two
equally-sized groups.8 For both the CK and HFA procedures, the returns of

8For the experiments using the 20-year sample with missing observations, firms vary in the

number of returns they contribute to their groups. Although the groups are equally-sized in the

number of firms, there will be some differences in the number of return observations.
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each half are used to construct two separate sets of factor estimates. The
process is repeated five thousand times, with the only difference between
iterations being the assignment of firms into the two halves.
If the factors are extracted correctly and precisely, then the two halves

should produce equivalent sets of factor estimates. Measurement of this
equivalence is the focus of the exercise. Using either the CK or HFA
procedures, let #f ji;t denote the estimate of the jth factor extracted from the first
half on repetition i: Let &f ji;t denote the corresponding factor estimate extracted
from the second half. I then run a set regressions similar to previous ones:

#f
j

i;t ¼ d0 þ
XK

k¼1

dk &f k
i;t þ xt ð13Þ

for j ¼ 1;y;K : Equivalence of the two sets of factors is measured by high
average ðR2iÞ and minimum ðR2iÞ R-squares across the K regressions.
The means of R2i across the five thousand repetitions are plotted in Fig. 1.

The means of ðR2iÞ are plotted in Fig. 2. The solid lines represent the means for
the CK method, while the dashed lines represent the HFA method. If a method
produces accurate estimates of the underlying factors, then the means should
be close to unity. Lower R-squares are evidence that a method results in
poorly-estimated or even spurious extracted factors.

Fig. 1. Cross validation average R2: Random samples are formed by randomly dividing up firms

into two groups of equal size. Each of the K factors extracted using returns from one group are

regressed on all the factors extracted from the other group. For each sample, the average R-square,

R2; of these K regressions is calculated. Higher values of R2 indicate greater consistency between

the factors extracted from each half of the data. Solid and dashed lines represent average R2 across

samples for the CK and HFA methods, respectively, as a function of the number of factors, K :
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The top left panels of Figs. 1 and 2, for instance, show that the CK and HFA
methods are roughly equivalent for K=1–3 in the 1979–1984 period. For
K=4, however, the average R2 is around 0.65 for CK, while the HFA value is
around 0.85. The corresponding average R2 is less than 0.2 for CK, compared
with 0.7 for HFA, indicating that on average one of the first four factors is
estimated with very low precision when using the CK method. When larger
numbers of factors are extracted, however, the CK method seems to perform
better, as the HFA factors produce average R2 that are fairly close to zero for
K>4.
In the 1984–1988 period, the CK method seems to fail again, this time for

K=2 and 3. The worst period for the CK method, however, is 1989–1993,
when even the first factor appears to be estimated with extremely low precision.
The first HFA factor, in contrast, seems to be estimated extremely accurately,
as it is nearly unchanged no matter how the sample is split. In 1994–1998, the
two methods perform more comparably, with HFA somewhat more consistent
in extracting the third factor.
In the 20-year sample without missing observations, CK fares poorly in

extracting the second factor. The R-squares generally increase when firms with
missing observations are added, consistent with the larger sample size. The gain

Fig. 2. Cross validation average R2: Random samples are formed by randomly dividing up firms

into two groups of equal size. Each of the K factors extracted using returns from one group are

regressed on all the factors extracted from the other group. For each sample, the minimum R-

square, R2; of these K regressions is calculated. Higher values of R2 indicate greater consistency

between the factors extracted from each half of the data. Solid and dashed lines represent average

R2 across samples for the CK and HFA methods, respectively, as a function of the number of

factors, K :
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is much larger for the HFA method, however, reflecting the fact that the larger
sample has a greater level of residual heteroskedasticity.
Overall, it appears that the CK procedure typically has difficulty in the

extraction of some relatively low-order factor, such as the second factor in
1984–1988 or the first factor in 1989–1993. One plausible explanation is that
because the CK factor is spurious, additional higher-order factors prove to be
beneficial. Low-order factors for the HFA method are comparatively well-
estimated, so little common variation remains for higher-order factors to
explain. Because higher order factors are not called for, extracting them
amounts to an overfitting of the data, so they are inconsistent with data not
used in their construction.
To summarize, low order factors from the Connor and Korajczyk often

appear to be spurious, while it is the high order HFA factors that are
imprecisely estimated. One implication is that more CK factors will appear to
be necessary to explain covariation in returns, so that estimates of the number
of factors in returns may be biased upward when using the CK extraction
procedure.

4.2. Explaining common benchmarks

Although it is not necessary, many investigations of the APT choose to test
prespecified factors, and a number of recent papers have identified benchmark
portfolios that appear to fare well as APT factors. In this section I look briefly
at the explanatory power that the CK and HFA factor estimates have over
these benchmark returns.
The portfolios I consider are the value-weighted and equal-weighted market

indexes, Fama and French’s (1993) size and book-to-market factors, Carhart’s
(1997) momentum factor, and a 30-year fixed term bond index from CRSP. I
regress each excess return series on between one and twelve CK or HFA factors
and again look at regression adjusted R-squares, which are plotted in Figs. 3–6.
As before, accurately estimated factors should result in higher adjusted R-
squares, although we no longer expect the to equal unity.9

Over the 1979–1983 sample, whose results are depicted in Fig. 3, there are
few differences between CK and HFA factors. Somewhat larger are the
differences in the 1984–1988 sample (Fig. 4), with HFA outperforming CK
most noticeably for the momentum factor. In both these samples, just one
factor is sufficient to explain the returns of the equal-weighted market port-
folio. Since Brown (1989) notes that the first principal component should
approximate the equal-weighted portfolio even when there are multiple factors,
this result is not unusual.

9Although raw R-squares are used throughout the remainder of the paper, adjusted R-squares

are used here because the focus is directly on the change in fit as more factors are considered.
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What is surprising is that in the 1989–1993 Sample, shown in Fig. 5, this
relation breaks down for the CK method, with the first factor explaining the
equal-weighted portfolio with an R-squared of less than 0.6. The first HFA

Fig. 3. Portfolio return adjusted R-squares for 1979–1983. Excess returns of six bench mark

portfolios are regressed on one to 12 extracted factors using monthly data from 1979–1983. Solid

and dashed lines denote the adjusted R-squares for the CK and HFA methods, respectively, as a

function of the number of factors, K :

Fig. 4. Portfolio return adjusted R-squares for 1984–1988. Excess returns of six benchmark

portfolios are regressed on one to 12 extracted factors using monthly data from 1984–1988. Solid

and dashed lines denote the adjusted R-squares for the CK and HFA methods, respectively, as a

function of the number of factors, K :
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factor, meanwhile, still explains the equal-weighted market almost perfectly,
suggesting that Brown’s argument is correct as long as residual heteroskedas-
ticity is taken into account.

Fig. 5. Portfolio return adjusted R-squares for 1989–1993. Excess returns of six benchmark

portfolios are regressed on one to 12 extracted factors using monthly data from 1989–1993. Solid

and dashed lines denote the adjusted R-squares for the CK and HFA methods, respectively, as a

function of the number of factors, K :

Fig. 6. Portfolio return adjusted R-squares for 1994–1998. Excess returns of six benchmark

portfolios are regressed on one to 12 extracted factors using monthly data from 1994–1998. Solid

and dashed lines denote the adjusted R-squares for the CK and HFA methods, respectively, as a

function of the number of factors, K :
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The other portfolios over the 1989–1993 sample are also better explained by
the first HFA factor. The value-weighted portfolio’s R-squared is not even 0.1
when it is regressed on the CK factor, while the corresponding value is about
0.6 for the HFA factor. Even as higher numbers of factors are considered, the
HFA factors outperform CK. Only once 12 factors are considered do the R-
squares of the CK and HFA factors roughly converge. Given the cross
validation results, however, it seems unlikely that more than six of these factors
are estimated with any accuracy.
Over the 1994–1998 sample (Fig. 6), the HFA factors continue to generally

outperform CK, although the differences are not as large as 1989–1993.
The 20-year sample with no missing observation is considered in Fig. 8,

while results with missing observations are shown in Fig. 9. These can be
compared informally to Fig. 7, which plots the average adjusted R-squares
over the four subperiods.
Fig. 8 reveals few meaningful differences between the two extraction

methods. When firms with missing observations are added (Fig. 9), however,
the HFA method regains its advantage over CK. In comparing the results in
Figs. 8 and 9, there appears to be no general pattern. While momentum returns
are better explained by the larger data set, the opposite result is obtained for
the 30-year bond and the value-weighted market index. This last finding is
perhaps not too surprising, since the data set without missing values was

Fig. 7. Portfolio return adjusted R-squares averaged across subsamples. Excess returns of six

benchmark portfolios are regressed on one to 12 extracted factors over four different five-year

subperiods. Solid and dashed lines denote the average of the four adjusted R-squares for the CK

and HFA methods, respectively, as a function of the number of factors, K :
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Fig. 8. Portfolio return adjusted R-squares for 1979–1998. Excess returns of six benchmark

portfolios are regressed on one to 12 extracted factors using monthly data from 1979–1998. Solid

and dashed lines denote the adjusted R-squares for the CK and HFA methods, respectively, as a

function of the number of factors, K :

Fig. 9. Portfolio return adjusted R-squares for 1979–1998, with missing observations. Excess

returns of six bench mark portfolios are regressed on one to 12 extracted factors using monthly

data from 1979–1998, including data on firms with missing observations. Solid and dashed lines

denote the adjusted R-squares for the CK and HFA methods, respectively, as a function of the

number of factors, K :
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mainly comprised of the large firms that make up that index. Consistent with
this result, the equally-weighted index is better explained by the sample that
includes firms with missing observations.
While the performance in Figs. 8 and 9 is in some cases superior to the

average performance shown in Fig. 7, the largest discrepancies suggest that the
best overall performance comes from using the HFA method over five-year
intervals.

5. Pricing the Fama-French factors

A principal use of the extracted factors is for testing the Arbitrage Pricing
Theory of Ross (1976). In this section I briefly consider the implications of
residual heteroskedasticity for tests of the APT and propose several strategies
for dealing with it. The question I ask is simple: do factors extracted from the
cross-section of stock returns price the three factors of Fama and French
(1993)?
The portfolios identified by Fama and French as ‘‘factors’’ have received a

great deal of attention, and it is not without debate that they represent factors
in the sense intended by Ross. Nevertheless, they represent feasible zero-
investment portfolios that could be maintained over time with a limited
amount of portfolio rebalancing.10 The portfolios, consisting of the value-
weighted market index, the Small Minus Big size-related portfolio, and the
High Minus Low book-to-market portfolio, are particularly interesting
because the apparent dependence of expected returns on size and book-to-
market remains one of the least understood features of equity markets.
I first consider a test of the APT based on the test statistic of Gibbons et al.

(1989). Let R denote the T �N matrix of excess returns on N assets, and let X
denote the T � ðK þ 1Þ matrix whose first column is vector of ones and whose
remaining columns consist of the time series of K extracted factors. Finally, let
#a denote the OLS estimate of factor model intercepts and #S the standard
unbiased estimate of the residual covariance matrix. Under the assumption of a
constant residual covariance matrix,

T2N2K

ðT21ÞNC

#a0 #S
21

#aBFN;T2N2K ; ð14Þ

where c is the (1,1) element of (X 0X)
1.
Since residual heteroskedasticity invalidates this statistic, an alternative test

is desirable. I use the GMM test of MacKinlay and Richardson (1991), which

10The ‘‘momentum factor’’ of Carhart (1997) also represents the return on a portfolio of stocks,

but the composition of this portfolio changes dramatically over time. Since the feasible return on

this portfolio may be heavily affected by transactions costs, I do not considered it here.
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has the added advantage of being robust to non-normality of returns. Letting
xt denote the tth row of X and #et the 1�N vector of time t OLS residuals,
define

J ¼
1

T

XT

t¼1

ðI#x0txtÞ; ð15Þ

L ¼
1

T

XT

t¼1

ð#e0t#et#x0txtÞ; ð16Þ

Q ¼ I#½0; 1�: ð17Þ

Then

T #a 0 ½QðJ 0L21JÞ21Q0�21 #aBX2ðNÞ ð18Þ

holds asymptotically.
Table 4 reports these test statistics and their p-values over the six samples for

a variety of values of K : Factors are extracted both using the CK and HFA
methods. In the cases where the use of different factor extraction methods leads
to different accept/reject outcomes at the 5% significance level, all statistics
appear in bold face type.
For three of the five-year samples, there is at least one value of K for which

the Fama-French portfolios result in a rejection of the APT using one set of
extracted factors but not the other. In general, there appear to be only a few
patterns in Table 4. The HFA factors may lead to larger or smaller values of
the test statistic, depending on both K and the sample period. In the first two
subperiods, the two methods lead to similar test statistics, reflecting the
unimportance of the extraction method in these samples.
Consistent with previous sections, the most dramatic differences are found in

the 1989–1993 subperiod, in which the HFA factors lead to much stronger
rejections of exact factor pricing. For K=1, the p-value for the GRS test with
CK factors is 0.303, but it declines to just 0.013 when HFA factors are used
instead. This result is somewhat expected, since the greater explanatory ability
of the HFA factors should increase the power of the test. Table 5, which
reports results for univariate tests, confirms this intuition, as both the OLS and
White (1980) standard errors of #a are consistently smaller for the HFA factors,
particularly for the 1989–1993 subsample.
The ordering is reversed for the 1994–1998 sample, so that using CK factors

instead of HFA factors now lowers the p-values of the GRS test, sometimes
substantially. This is slightly surprising since the CK standard errors are still
somewhat larger than those computed using the HFA factors. The
corresponding panel of Table 5 implies that the strength of these rejections is
generally the result of larger alphas for the CK method, suggesting that the
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Table 4

Multivariate tests of APT pricing of the Fama-French factors

Factors extracted using the Connor and Korajczyk (1986) method (CK) and the heteroskedastic

factor extraction method of Section 2.1 (HFA) are used in multivariate tests of the APT. Extracted

factors are used in OLS regressions to estimate the degree of mispricing ð#aÞ in the Value Weighted
index and the Small Minus Big and High Minus Low portfolios of Fama and French (1993). Tests

statistics are computed using the tests of Gibbons et al. (1989) and MacKinlay and Richardson

(1991) as reviewed in Section 5. P-values are reported in parentheses. Bold face type indicates cases

in which the two factor extraction methods lead to different accept/reject outcomes at the 5%

significance level.

Gibbons et al. (1989) MacKinlay and Richardson (1991)

Fð3;T2KÞ w2ð3Þ

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12 K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

1979–1983 (T=60)

CK 2.595 3.713 4.277 8.090 8.860 13.673 15.738 24.969

(0.061) (0.017) (0.009) (0.000) (0.031) (0.003) (0.001) (0.000)

HFA 2.347 2.698 4.346 10.397 7.187 8.941 15.384 36.118

(0.082) (0.055) (0.008) (0.000) (0.066) (0.030) (0.002) (0.000)

1984–1988 (T=60)

CK 2.624 6.208 6.077 6.687 8.157 18.978 20.648 27.727

(0.059) (0.001) (0.001) (0.001) (0.043) (0.000) (0.000) (0.000)

HFA 2.721 7.042 6.494 6.141 8.362 21.837 24.622 25.427

(0.053) (0.000) (0.001) (0.001) (0.039) (0.000) (0.000) (0.000)

1989–1993 (T=60)

CK 1.244 3.939 4.843 4.782 3.628 12.193 16.038 16.479

(0.303) (0.013) (0.005) (0.006) (0.305) (0.007) (0.001) (0.001)

HFA 3.954 9.672 8.804 11.941 11.770 30.942 31.121 43.987

(0.013) (0.000) (0.000) (0.000) (0.008) (0.000) (0.000) (0.000)

1994–1998 (T=60)

CK 3.504 3.247 6.237 6.537 11.422 10.909 20.410 22.697

(0.021) (0.029) (0.001) (0.001) (0.010) (0.012) (0.000) (0.000)

HFA 3.194 2.370 3.895 6.056 10.082 8.133 14.821 23.104

(0.030) (0.081) (0.014) (0.001) (0.018) (0.043) (0.002) (0.000)

1979–1998 (T=240)

CK 7.102 7.418 7.048 10.319 22.263 23.187 22.965 36.716

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

HFA 6.966 6.582 6.464 10.314 21.621 20.068 21.253 34.686

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1979–1998, with missing observations (T=240)

CK 5.370 6.501 10.154 14.658 16.857 20.953 34.602 46.779

(0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

HFA 5.302 5.052 14.150 17.177 16.321 16.876 40.465 49.805

(0.001) (0.002) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000)
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Table 5

Ordinary least squares alphas for the Fama-French factors

Factors extracted using the Connor and Korajczyk (1986) method (CK) and the heteroskedastic

factor extraction method of Section 2.1 (HFA) are used in univariate tests of the APT. Extracted

factors are used in OLS regressions to estimate the degree of mispricing ð#aÞ in the Value Weighted
(VW) index and the Small Minus Big (SMB) and High Minus Low (HML) portfolios of Fama and

French (1993). OLS standard errors are reported in parentheses, while White (1980) standard errors

appear in square brackets.

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

CK HFA CK HFA CK HFA CK HFA

1979–1983

VW 
0.49 
0.45 
0.44 
0.39 
0.45 
0.39 
0.44 
0.45
(0.25) (0.24) (0.17) (0.16) (0.16) (0.16) (0.12) (0.13)

[0.21] [0.21] [0.15] [0.15] [0.14] [0.15] [0.13] [0.13]

SMB 0.36 0.38 0.30 0.31 0.31 0.24 0.27 0.23

(0.24) (0.24) (0.21) (0.19) (0.19) (0.18) (0.15) (0.16)

[0.22] [0.22] [0.19] [0.18] [0.18] [0.18] [0.16] [0.16]

HML 0.84 0.82 0.75 0.73 0.78 0.93 1.00 0.97

(0.34) (0.34) (0.32) (0.32) (0.26) (0.25) (0.22) (0.21)

[0.37] [0.38] [0.35] [0.35] [0.30] [0.26] [0.26] [0.22]

1984–1988

VW 0.33 0.38 0.17 0.08 0.01 
0.03 
0.05 0.01

(0.23) (0.23) (0.21) (0.19) (0.18) (0.17) (0.14) (0.14)

[0.22] [0.22] [0.22] [0.21] [0.18] [0.17] [0.16] [0.14]

SMB 
0.39 
0.38 
0.33 
0.23 
0.22 
0.30 
0.21 
0.35
(0.24) (0.24) (0.24) (0.23) (0.21) (0.23) (0.21) (0.21)

[0.24] [0.23] [0.26] [0.26] [0.24] [0.23] [0.23] [0.19]

HML 0.66 0.64 0.85 0.88 0.77 0.61 0.79 0.66

(0.27) (0.27) (0.22) (0.22) (0.21) (0.20) (0.19) (0.19)

[0.27] [0.27] [0.22] [0.22] [0.22] [0.19] [0.19] [0.18]

1989–1993

VW 0.54 0.02 
0.04 
0.12 
0.11 
0.07 
0.01 
0.06
(0.46) (0.32) (0.27) (0.12) (0.21) (0.12) (0.14) (0.11)

[0.46] [0.26] [0.25] [0.13] [0.21] [0.13] [0.15] [0.13]

SMB 
0.39 
0.52 
0.53 
0.48 
0.51 
0.54 
0.54 
0.60
(0.24) (0.24) (0.23) (0.20) (0.22) (0.19) (0.20) (0.18)

[0.24] [0.23] [0.22] [0.20] [0.23] [0.21] [0.21] [0.21]

HML 0.05 0.20 0.22 0.38 0.25 0.40 0.28 0.42

(0.31) (0.32) (0.30) (0.19) (0.21) (0.19) (0.18) (0.18)

[0.30] [0.28] [0.28] [0.20] [0.22] [0.20] [0.19] [0.19]
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differences in the inferences drawn using each method are not solely the result
of differences in power.
For the 20-year samples, all tests result in highly significant rejections,

generally because of the extracted factors’ inability to explain the large positive

Table 5 (continued)

K ¼ 1 K ¼ 3 K ¼ 6 K ¼ 12

CK HFA CK HFA CK HFA CK HFA

1994–1998

VW 0.62 0.69 0.53 0.39 0.34 0.30 0.24 0.17

(0.30) (0.29) (0.25) (0.23) (0.22) (0.19) (0.19) (0.14)

[0.31] [0.29] [0.26] [0.24] [0.22] [0.20] [0.20] [0.15]

SMB 
0.89 
0.85 
0.85 
0.72 
0.87 
0.74 
0.80 
0.70
(0.29) (0.28) (0.28) (0.28) (0.27) (0.23) (0.23) (0.20)

[0.27] [0.27] [0.27] [0.28] [0.27] [0.24] [0.25] [0.22]

HML 0.33 0.28 0.36 0.21 0.55 0.33 0.56 0.61

(0.26) (0.26) (0.25) (0.22) (0.22) (0.22) (0.19) (0.18)

[0.25] [0.25] [0.25] [0.21] [0.22] [0.23] [0.19] [0.19]

1979–1998

VW 
0.03 
0.03 
0.12 
0.18 
0.12 
0.15 
0.15 
0.15
(0.11) (0.11) (0.08) (0.08) (0.07) (0.07) (0.07) (0.07)

[0.10] [0.10] [0.08] [0.09] [0.07] [0.07] [0.07] [0.07]

SMB 
0.31 
0.31 
0.23 
0.14 
0.23 
0.19 
0.25 
0.25
(0.14) (0.14) (0.12) (0.12) (0.10) (0.10) (0.10) (0.09)

[0.13] [0.13] [0.12] [0.12] [0.10] [0.10] [0.10] [0.09]

HML 0.54 0.54 0.55 0.49 0.42 0.43 0.53 0.52

(0.15) (0.15) (0.15) (0.15) (0.13) (0.13) (0.12) (0.12)

[0.15] [0.15] [0.16] [0.16] [0.13] [0.13] [0.12] [0.12]

1979–1998, with missing observations

VW 0.17 0.16 0.12 0.02 
0.07 
0.17 
0.13 
0.12
(0.15) (0.14) (0.13) (0.13) (0.10) (0.08) (0.09) (0.08)

[0.14] [0.13] [0.12] [0.12] [0.10] [0.09] [0.09] [0.08]

SMB 
0.31 
0.30 
0.31 
0.25 
0.24 
0.16 
0.21 
0.26
(0.13) (0.13) (0.13) (0.12) (0.12) (0.11) (0.12) (0.10)

[0.12] [0.12] [0.12] [0.12] [0.12] [0.11] [0.12] [0.10]

HML 0.49 0.49 0.54 0.45 0.57 0.51 0.56 0.54

(0.15) (0.15) (0.15) (0.15) (0.14) (0.11) (0.13) (0.11)

[0.15] [0.15] [0.15] [0.15] [0.15] [0.12] [0.14] [0.11]
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returns of the HML portfolio. By looking at the individual alphas, we can see a
few differences between the HFA and CK methods. The value-weighted index,
for example, has a significant alpha under HFA but not CK when K=6.
In some cases, it is difficult to attribute stronger rejections to either larger

alphas or smaller standard errors. In the 1979–1983 sample with K=3, for
example, the CK factors lead to a much stronger rejection, even though their
alphas and standard errors are comparable to those generated by the HFA
factors. In these cases, the different outcomes of the CK and HFA methods
must be attributed to different covariance estimates implied by the two
methods.
The results for MacKinlay and Richardson’s (1991) test are very similar, but

generally result in lower p-values than GRS. One interpretation is motivated by
Shanken’s (1990) derivation of the MacKinlay–Richardson test as Hotelling’s
T2 test with a White heteroskedasticity-consistent covariance matrix. In
comparing the OLS standard errors with the White standard errors in Table 5,
we see that the White standard errors are often smaller, and so tend to produce
stronger rejections than the OLS standard errors that underlie the GRS test.

6. Conclusion

Heteroskedastic factor analysis (HFA) is a simple and natural extension of
the method of Connor and Korajczyk (1986). Overall, there occasionally seems
to be a large efficiency gain from allowing residual time series heteroskedas-
ticity through the use of HFA instead of the CK method.
In the data considered, the 1989–1993 sample represents one period in which

the CK procedure appears to seriously misestimate the true factors, with the
HFA factors offering much greater explanatory power for common benchmark
returns. While the two methods performed more similarly in earlier periods, the
HFA method still generally outperformed CK in explaining returns. The
treatment of residual heteroskedasticity was also shown to be important in
tests of the APT.
Over a 20-year period, choosing firms with no missing observations led to a

fairly small sample that did not generate extremely accurate results but that
also did not generate the conspicuous mistakes of the 1989–1993 sample. By
adding firms with missing observations, the sample size increased dramatically,
but the introduction and subtraction of firms made the sample residuals much
more heteroskedastic, and the HFA procedure again offered a significant
performance advantage.
The proposed method may be particularly relevant in future research.

Campbell et al. (2001) find that although overall market volatility did not
increase over the period from 1962 to 1997, the idiosyncratic volatilities of
individual firms increased substantially. As these residuals grow in importance,
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it seems likely that accounting for their heteroskedasticity will become even
more essential.
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