11.7 Maximum and Minimum Values.

At any point \((a, b)\) where \(f(x, y)\) achieves a local maximum or minimum value,
\[\frac{\partial f}{\partial x}(a, b) = 0 \text{ and } \frac{\partial f}{\partial y}(a, b) = 0, \]
provided that \(\frac{\partial f}{\partial x}(a, b)\) and \(\frac{\partial f}{\partial y}(a, b)\) both exist.

DEF. A **critical point** for a function \(f\) is a point \((a, b)\) that satisfies either both
\[\frac{\partial f}{\partial x}(a, b) = 0 \text{ and } \frac{\partial f}{\partial y}(a, b) = 0, \]

or at least one of \(\frac{\partial f}{\partial x}(a, b)\) or \(\frac{\partial f}{\partial y}(a, b)\) does not exist.

Local Max/Min \(\Rightarrow\) \((a, b)\) is a critical point.

\(\text{Local Max/Min at } (a, b)\)
(a) \(\text{Example (from an old midterm 2)} \)

\[
\text{let } f(x,y) = y(4-x^2-y^2) \\
= 4y - yx^2 - y^3
\]

(a) Find all critical points.

\[
\nabla f = \langle -2xy, 4 - x^2 - 3y^2 \rangle = \langle f_x, f_y \rangle
\]

at a critical point \((x,y)\), \(\nabla f(x,y) = 0,0\)

\[
\therefore \begin{cases} \quad -2xy = 0 \quad (1) \\
4-x^2-3y^2 = 0 \quad (2) \end{cases}
\]

From (1), \(x = 0\) or \(y = 0\).

If \(x = 0\),

\[
(2) \Rightarrow 4 - 3y^2 = 0 \\
\Rightarrow 4 = 3y^2 \\
\Rightarrow y = \pm \frac{2}{\sqrt{3}}
\]

\[\therefore \text{The critical points are } \left(0, \frac{2}{\sqrt{3}}\right), \left(0, -\frac{2}{\sqrt{3}}\right), \left(2, 0\right) \text{ and } \left(-2, 0\right).\]
Each critical point could be a local maximum, local minimum, or neither.

Examples:

local max local min saddle point

How can we mathematically distinguish these different cases?

SECOND DERIVATIVES TEST:

Suppose that \((a, b)\) is a critical point for a smooth function \(f\).

\[
D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}(a, b)^2
\]

(a) If \(D(a, b) > 0\) and \(f_{xx}(a, b) > 0\), then \(f\) has a local MINIMUM at \((a, b)\).
b) If $D(a,b) > 0$ and $f_{xx}(a,b) < 0$, then f has a local **maximum** at (a,b).

c) If $D(a,b) < 0$, then f has a saddle point at (a,b).

Summarize with a chart:

<table>
<thead>
<tr>
<th>D</th>
<th>f_{xx}</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$</td>
<td>$+$</td>
<td>local min</td>
</tr>
<tr>
<td>$+$</td>
<td>$-$</td>
<td>local max</td>
</tr>
<tr>
<td>$-$</td>
<td>n/a</td>
<td>saddle</td>
</tr>
</tbody>
</table>

Notes:

1. $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}^2$

2. If $D = 0$, the second derivative test is indeterminate.
Example (b)

Use the second derivative test to classify the critical points of the function.

\[f(x, y) = y(4 - x^2 - y^2) \]

\[
\begin{align*}
f_{xx}(x, y) &= -2y \\
f_{xy}(x, y) &= -2x \\
f_{yy}(x, y) &= -2y
\end{align*}
\]

\[
\begin{align*}
f_{yy} &= \frac{\partial}{\partial y} f_x \\
&= \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \left(y(4 - x^2 - y^2) \right) \right) \\
&= \frac{\partial}{\partial y} \left(-2xy \right) \\
&= -2x
\end{align*}
\]

\[
\begin{align*}
D(x, y) &= f_{xx}f_{yy} - f_{xy}^2 \\
&= (-2y)(-2y) - (-2x)^2 \\
&= 4y^2 - 4x^2 = 4(3y^2 - x^2)
\end{align*}
\]

At \((0, \pm \frac{2}{\sqrt{3}})\),

\[
D(0, \pm \frac{2}{\sqrt{3}}) = 4 \left(3 \left(\pm \frac{2}{\sqrt{3}} \right)^2 - 0^2 \right) > 0
\]

\[
f_{xx}(0, \frac{2}{\sqrt{3}}) = -2 \left(\frac{2}{\sqrt{3}} \right) < 0
\]

\(\Rightarrow\) \(f\) has a local max at \((0, \frac{2}{\sqrt{3}})\)

\[
f_{xx}(0, -\frac{2}{\sqrt{3}}) = -2 \left(-\frac{2}{\sqrt{3}} \right) > 0
\]

\(\Rightarrow\) \(f\) has a local min at \((0, -\frac{2}{\sqrt{3}})\).

At \((\pm 2, 0)\),

\[
D(\pm 2, 0) = 4 \left(3(0)^2 - (\pm 2)^2 \right) < 0
\]

\(\Rightarrow\) \(f\) has saddle points at both \((2, 0)\) and \((-2, 0)\).
ABSOLUTE/Global Extrema

Single-variable case

\[z = f(x(t)) = g(t) \]

"Closed interval method"

Theorem:

A continuous function on a closed bounded set \(D \) in \(\mathbb{R}^2 \) must have an absolute maximum and absolute minimum in \(D \).

How can we find the absolute maximum and minimum values of \(f \) on \(D \)?

1. Find all critical points in \(D \) and test the function values there.
2. Find extreme values on the boundary of \(D \).
3. Compare all function values at critical points and boundary points.
Examples.

\(f(x, y) = x^2 + y^2 - x + 1. \)

Find the absolute maximum and minimum values of \(f \) on the closed disk \(x^2 + y^2 \leq 1. \)
Examples (cont'd)

2. Find the absolute maximum and minimum values of
\[f(x,y) = x^2 - 2xy + 2y \]
on the set
\[D = \{(x,y) : 0 \leq x \leq 3, 0 \leq y \leq 2\}. \]