Office hours on Wed cancelled.
Substitute for Friday's class.

Quick note about parametrizations.

\[\mathbf{r} = (x, y, z) \]

\[\begin{align*}
 t &= -3 \\
 s &= 6, t = -2.7 \\
 s &= \text{arc length} \\
 \mathbf{R} &= (x, y, z)
\end{align*} \]

\[\begin{align*}
 s &\rightarrow \mathbf{R} \\
 t &\rightarrow \mathbf{R}
\end{align*} \]

Variable function.

\[\mathbf{R}(s) = \mathbf{r}_1(-2.7) \]

Last day, we had \(\mathbf{r}_1(t) \).
We found \(t = f(s) \).

\[\mathbf{R} = \mathbf{r}(s) = \mathbf{r}_1(t) = \mathbf{r}_1(f(s)) \]
Motivation: Optimization problems that are not so contrived.

If 1200 cm2 of material is available to make a box with an open top, find the largest possible volume of the box.

\[V = xyz \]

square base: \(x = y \)

surface area: \(1200 = xy + 2yz + 2xz \)

\[V = f(x, y, z) = xyz \]

function of 3 variables.

We are now interested in functions

\[f: D \rightarrow \mathbb{R} \]

where the domain \(D \) is (part of) \(\mathbb{R}^2 \) (or \(\mathbb{R}^3 \)).
Graph of a function \(f : \mathbb{R}^2 \to \mathbb{R} \).

The graph forms a surface in \(\mathbb{R}^3 \).

LEVEL CURVES

- These are the "\(z \)-traces" of the surface \(z = f(x,y) \); i.e., the curves
 \[f(x,y) = k \]
 for some constant \(k \).

Example 1: Mountain Terrain

"Contour map"
Example 2: \(f(x, y) = e^{-x^2-y^2} \).

What shapes are the level curves?

A) paraboloid
B) bell curves
C) circles
D) ellipses
E) other.

"Level curves" \(z = f(x, y) = k \) for some constant\(e^{-x^2-y^2} = k \).

\(\Rightarrow -x^2 - y^2 = \ln(k) \), \(\Rightarrow x^2 + y^2 = -\ln(k) = \text{null} \), \(\Rightarrow x^2 + y^2 = \frac{1}{k} \) (a constant)

\(0 < k \leq 1 \)

\(x = 0 \Rightarrow -y^2 \)

\(z = e^{-y^2} \).

\(f(x, y) = g(x^2 + y^2) \)

will always level curves that are circles.

(in this case \(g(u) = e^{-u} \))