Compositions of Functions (continued)

Examples:

a) \(f(x) = x^2 + \sqrt{x-1} \)
 \(g(x) = x + 2 \)

\[f \circ g (x) = f(g(x)) = f(x+2) = (x+2)^2 + \sqrt{(x+2)-1} = (x+2)^2 + \sqrt{x+1} \]

\[g \circ f (x) = g(f(x)) = g(x^2 + \sqrt{x-1}) = x^2 + \sqrt{x-1} + 2 \]

Domain of \(f \circ g \) = \(\{ x \in \mathbb{R} : x \geq 1 \} \)
Domain of \(g \circ f \) = \(\{ x \in \mathbb{R} : x \geq 1 \} \)

"Such that"
b) Consider \(h(x) = (\sqrt{x+1})^3 - \frac{1}{\sqrt{x+1}} \).

Express \(h(x) \) as the composition of two functions: \(h = f \circ g \)

\[f(x) = x^3 - \frac{1}{x} \]
\[g(x) = \sqrt{x+1} \]

Then \(f(g(x)) = f(\sqrt{x+1}) = (\sqrt{x+1})^3 - \frac{1}{\sqrt{x+1}} \)

Another way of doing this...

\[f(x) = (\sqrt{x})^3 - \frac{1}{\sqrt{x}} \]
\[g(x) = x+1 \]

In this case, the domain of \(f \circ g \) was the set of all real numbers \(x \) such that:
- \(x \geq -1 \) and \(x \neq -1 \).

i.e. \(x \geq -1 \)

In general, the domain of \(f \circ g(x) = f(g(x)) \)

is the set of all real numbers \(x \) such that:
- \(x \) is in the domain of \(g \) and
- \(g(x) \) is in the domain of \(f \).
Inverse Functions

\[\text{Caution: } f^{-1} \neq \frac{1}{f} \]

The "inverse" of a function \(f \) satisfies:

\[f^{-1}(f(x)) = f(f^{-1}(x)) = x \quad \text{i.e. } \quad f^{-1}(y) = x \text{ whenever } f(x) = y \]

Example.

Example 1 (let \(f(x) = x^3 + 1 \)).

Find a formula for \(f^{-1}(x) \) and sketch its graph.

Let:

\[y = f(x) = x^3 + 1 \]

\[y - 1 = x^3 \]

\[\Rightarrow 3\sqrt{y-1} = x \]

\[\Rightarrow x = f^{-1}(y) = 3\sqrt{y-1} \]

\[\therefore f^{-1}(x) = 3\sqrt{x-1} \text{ for any } x \in \mathbb{R} \]

Check:

\[f^{-1}(f(x)) = 3\sqrt{x^3+1-1} = 3\sqrt{x^3} = x \]

\[f(f^{-1}(x)) = (3\sqrt{x-1})^3 + 1 = (3\sqrt{x-1})^3 + 1 \]

\[= x - 1 + 1 = x \]

[Ref. 3]