How can we combine functions together to make new functions?

1. Sums of functions:
 - Let \(f \) and \(g \) be any two functions.
 - For any \(x \) in the domain of both \(f \) and \(g \),
 \[
 (f+g)(x) = f(x) + g(x)
 \]

Example:
Let \(f(x) = \frac{1}{x-2} \) and \(g(x) = \sqrt{x} \).
Then
\[
(f+g)(x) = f(x) + g(x) = \frac{1}{x-2} + \sqrt{x}
\]

what is the domain of \(f+g \)?
\[
\{ x \in \mathbb{R} : x \neq 2 \text{ and } x \geq 0 \} = [0, 2) \cup (2, \infty)
\]
\[(f+g)(x) = f(x) + g(x)\]

1. In general, the domain of \(f+g\) is the set of all numbers that are in both the domain of \(f\) and the domain of \(g\).

 \[D(f+g) = D(f) \cap D(g)\]

 Similarly, the difference \(f-g\) is also a function given by:

 \[(f-g)(x) = f(x) - g(x)\]

 Also, for \(a, b \in \mathbb{R}\):

 \[(af + bg)(x) = af(x) + bg(x)\]

2. **Products and Quotients of Functions.**

 - The product and quotient of \(f\) and \(g\) are defined by the rules:

 \[(fg)(x) = f(x)g(x)\quad \text{and}\quad \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}\]

 - The domain of \(fg\) is the set of all real numbers \(x\) such that \(x\) is both in the domain of \(f\) and the domain of \(g\):

 \[D(fg) = D(f) \cap D(g)\]

 True or False: The domain of \(\frac{f}{g}\) is also the set of all real numbers in the domains of both \(f\) and \(g\).

 False! We also require, for \(g(x) \neq 0\) \(\forall x\) in the domain of \(\frac{f}{g}\) is the set of all \(x\).
Such that \(x \) is in both the domains of \(f \) and \(g \) \(\text{AND} \ g(x) \neq 0 \).

Example.
what is the domain of \(\frac{f}{g} \), where \(f(x) = \sqrt{x} \) and \(g(x) = x^2 - 9 \)?

\[
\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x^2 - 9}.
\]

The domain is the set of all \(x \) such that \(x > 0 \) \(\text{AND} \) \(x \in \mathbb{R} \) \(\text{AND} \) \(x \neq \pm 3 \). \(\text{domain of } f \) \(\text{domain of } g \) \(g(x) \neq 0 \).

i.e. \(x > 0 \) and \(x \neq 3 \)
i.e. \([0, 3) \cup (3, \infty) \)

Compositions of Functions.

Let \(f \) and \(g \) be functions.

\[
\begin{array}{c}
\text{input} \\
\uparrow \\
\bigtriangleup
\end{array} \xrightarrow{g} \bigtriangleup \xrightarrow{g(x)} \bigtriangleup \xrightarrow{f} \bigtriangleup \xrightarrow{f(g(x))} \text{output}
\]

This is a function we call \(f \circ g \) "the composition of \(f \) and \(g \)."

Real-life Examples.
Let x = mercury level in the algae.

$u = \text{the fish} = g(x)$

$y = \text{the human} = f(u) = f(g(x))$

We have

$y = f(g(x)) = f \circ g(x)$

Can you come up with a real-life example?

- **Russian nesting dolls**.

Examples: using our favourite functions from this class.

1. $f(x) = \text{ }$
 $g(x) = \text{ }$

2. $f(x) = \text{ }$
 $g(x) = \text{ }$