M108: Lecture 11.

(see attached worksheet).

- We can graph any function of the form:
 \[f(x) = a(x-b)^2 + c \]
 with any constants.

- What about other quadratic functions, such as:
 \[g(x) = x^2 - (ex + 2) \]

Goal: Take any function of the form
\[f(x) = ax^2 + bx + c \]
and express it in the form \(\ast \) above.

Note:

\[(x+3)^2 = (x+3)(x+3) = x^2 + 3x + 3x + 9 = x^2 + 6x + 9. \]

In general, for any \(u \),

\[(x+u)^2 = (x+u)(x+u) = x^2 + 2ux + u^2. \]
Examples.

1. \(h(x) = x^2 - 6x + 9 \)
 \[u = -3 \]
 - Make this \(2ux = -6x \)
 - \(u = -3 \)
 - Then \(u^2 = 9 \)

2. \(g(x) = x^2 - 6x + 11 \)

Thoughts:

\(g(x) = x^2 - 6x + 11 \)

\(= x^2 - 6x + 9 + 2 \)

\(h(x) = (x-3)^2 \)

\(\text{"completing the square"} \)

\(g(x) = (x-3)^2 + 2 \)

\(f(x) = x(x-6) \)

\(h(x) = x^2 \)

Shift to the right by 6.

\(l(x) = (x-6)^2 \)

\(y = g(x) \)

\(y = x^2 \)

\(y = (x-3)^2 \)
3. \[f(x) = 3x^2 - 6x + 8 \]
\[= 3 \left(x^2 - 2x + \frac{8}{3} \right) \]
\[= 3 \left(\left(x^2 - 2x + 1 \right) + \frac{5}{3} \right) \]
\[= 3 \left((x-1)^2 + \frac{5}{3} \right) \]
\[= 3(x-1)^2 + 5 \cdot \]

\[(x-2)^2 = x^2 - 4x + 4 \]
\[(x-1)^2 = x^2 - 2x + 1 \]

\[y = x^2 \]
\[y = 3x^2 \]
\[y = 3(x-1)^2 + 5 \]

\[f(x) = -x^2 + -x + - \]
1. Use the axes to sketch the graphs of the functions below.

\[f_1(x) = x^2 \]

\[f_2(x) = (x - 2)^2 \]

\[f_3(x) = -(x - 2)^2 \]

\[f_4(x) = -\frac{1}{2} (x - 2)^2 \]

\[f_5(x) = -\frac{1}{2} (x - 2)^2 + 3 \]
2. Fill in the blanks with any numbers you like.

\[f(x) = _ _ (x - _ _ _)^2 + _ _ _ \]

Exchange papers and sketch graphs of each other's functions.
3. Find an equation for the function f graphed below.

\[y = f(x) \]

\[f(x) = \]

4. [Time permitting] Sketch the graph of $g(x) = 2x^2 + 4x + 1$.