Math 108: Lecture 10

- Quiz cancelled for next week. (due to Midterm)
- Homework due Wed. (Updated)

Chapter 1, Chapter 3

Functions (cont'd)

Summary so far:

\[x \rightarrow f \rightarrow f(x). \]

Domain = set of inputs

Range = set of outputs

"rule"

Notation

\[f(x) = y. \]

input \quad \text{output}

Example:

C1) If \(f(x) = x^2 - 1 \), what is \(f(x+1) \)?

A) \(x^2 \)
B) \(x^2 + 2 \)
C) \(x^2 + 2x \)
D) Other.

\[
\begin{align*}
\text{f(x+1)} &= (x+1)^2 - 1 \\
&= x^2 + 2x + 1 - 1 \\
&= x^2 + 2x.
\end{align*}
\]

\[
\begin{align*}
f(x+1) &= f(x) + 1 \\
f(1) &= f(1) + f(1)
\end{align*}
\]
In this case, \[y = f(x) = x^2. \]

What is the domain of this function?

55
A. \(\mathbb{R} \)
B. \([0, \infty)\)
C. \((0, \infty)\)
D. More information needed
E. Other: ___

*When we don’t specify the domain, we assume that it is the largest set of numbers for which the function is defined (makes sense).

What is the range of \(f(x) = x^2 \)?

A. \(\mathbb{R} \)
B. \([0, \infty)\)
C. \((0, \infty)\)
D. More info needed
E. Other: ___
Example: \(x = y^2 \)

Graph:

Does this define a function \(y = f(x) \)?

No!

However, we can create a function by choosing only the upper branch:

\[
y = g(x) = \sqrt{x} \quad \text{non-negative} \quad \Rightarrow \quad \text{the positive square root of } x
\]

(3) What is the domain of \(g \)?

- A all real numbers, \(\mathbb{R} \)
- B \([0, \infty)\)
- C \((0, \infty)\)
- D other

\(\sqrt{0} = 0 \).

\(0 \cdot 0 = 0 \)

(4) What is the range of \(g \)? \([0, \infty)\)
(A) \(h(x) = \frac{1}{x^2 - 1} \)

what is the domain of \(h \)?

A) \(\mathbb{R} \)

B) \(\{ x \neq 0 \} \)

C) \(\{ x \neq \pm 1 \} \)

D) Other: \(\{ x \neq \pm 1 \} \).

we can't have 0 in the denominator:

\[
x^2 - 1 = 0 \\
\Rightarrow x^2 = 1 \\
\Rightarrow x = \pm 1
\]

Piecewise-defined Functions.

Last class, we saw an example that looked something like this.

\[y = f(x) \]

Can we represent this function symbolically?

\[
f(x) = \begin{cases}
 x - 1 & \text{if } x < 2, \\
 2 & \text{if } x \geq 2.
\end{cases}
\]

E.g. \(f(3) = 2 \), \(f(-1) = (-1) - 1 = -2 \)
Examples:

1. Sketch the graph of the function:

\[f(x) = \begin{cases}
 x^2 & \text{if } x \leq 2 \\
 3-x & \text{if } 2 < x \leq 4 \\
 1 & \text{otherwise}
\end{cases} \]

2. A country charges 15% tax on the first $60,000 of yearly income and 40% on all income over $60,000. Express the total tax T as a function of income M.