Homework 2 due Tuesday.
Extra office hours M 11:30-12:30 EEB 528.
Midterm Thursday Oct 10
Reading: 4.3-4.4

Linear transformations \(\mathbb{R}^n \to \mathbb{R}^m \)
Goal: Understand the geometry of linear maps.

Recall:
Definition: For an \(m \times n \) matrix \(A \),
- The nullspace (or kernel) of \(A \) is \(N(A) = \{ x \in \mathbb{R}^n \mid Ax = \mathbf{0} \} \).
- The range (or column space) of \(A \) is
 \[R(A) = \{ Ax \mid x \in \mathbb{R}^n \} = \text{Span (columns of } A \text{)} \]
- The row space of \(A \) is
 \(R(A^T) = \text{Span (rows of } A \text{)} \).

Problem: Let \(u = (\frac{1}{2}) \), \(v = (\frac{3}{4}) \), and let
\(A = u v^T = (\frac{1}{2})(3 \ 4) = (\frac{3}{8} \ \frac{4}{8}) \).
What are \(R(A), R(A^T), N(A), N(A^T) \)?

Answer: Yes, we could apply Gaussian elimination.
But we can also just observe that for any vector \(x \),
\(Ax = u v^T x = (v^T x) u \)
\(\Rightarrow R(A) = \text{Span (}u\text{)}, a \text{ line.} \)
Similarly, \(R(A^T) = \text{Span (}v\text{)}, a \text{ line.} \)
Also \(Ax = \mathbf{0} \iff v^T x = \mathbf{0} \)
\[3x_1 + 4x_2 \]
\(\iff x = (-\frac{4}{3}, \frac{2}{3}) \)
\(\Rightarrow N(A) = \text{Span (}(-\frac{4}{3}, \frac{2}{3})\text{)}, \text{ the line perpendicular to } u \)
Similarly \(N(A^T) = \text{Span (}(-\frac{2}{3}, 1)\text{)} \).

Definition: A matrix \(A \) is diagonally dominant
if for all rows \(j \),
\[|a_{jj}| \geq \sum_{i \neq j} |a_{ij}| \]
\[|a_{ij}| \geq \sum_{i \neq j} |a_{ij}| \]

and is strictly diagonally dominant if the inequality is strict (>) for all rows.

Theorem: If \(A \) is strictly diagonally dominant, then

\[N(A) = \{ \mathbf{0} \} \]

Proof: Let \(x \in N(A) \), \(Ax = 0 \).
Let \(j \) be a coordinate so \(|x_j| = \max_i |x_i| \) has maximum magnitude.

\[(Ax)_j = 0 = a_{jj}x_j + \sum_{i \neq j} a_{ij}x_i \]

\[|a_{jj}x_j| = |\sum_{i \neq j} a_{ij}x_i| \]

\[\leq \sum_{i \neq j} |a_{ij}||x_i| \]

\[\leq \left(\sum_{i \neq j} |a_{ij}| \right) |x_j| \]

\[\Rightarrow x_j = 0 \Rightarrow x = 0 \Rightarrow N(A) = \{ \mathbf{0} \} \quad \Box \]

What about diagonally dominant matrices?

Example:

\[
A = \begin{pmatrix}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{pmatrix}
\]

This is proportional to the matrix you get by discretizing the second derivative operator on the circle:

\[f''(t) \approx \frac{1}{h^2} [f(t+h) - 2f(t) + f(t-h)] \]

with the 1st and last equations wrapping around.

(Note that multiplying by \(\frac{1}{h^2} \) doesn't change the range or nullspace.)

Observe: \(A \) is diagonally dominant (but not strictly so).

What is \(N(A) \)?

Claim: \(N(A) = \text{Span} \{ \mathbf{c}, 1, 1, \ldots, 1 \} \}

- set of all constant vectors

Intuition: \(A \) represents double differentiation, so only constant vectors should be sent to \(0 \).
Proof:
\[
A \left(\vec{i} \right) = \left(\begin{array}{cc}
\text{sum of } a_{ij} \text{ across row } i \\
\text{sum across row } n
\end{array} \right) = 0
\]

\[\Rightarrow (1, 1, ..., 1) \in N(A)\]
\[\Rightarrow \text{Span}(\mathbb{E}(1, 1, ..., 1)) \subseteq N(A).\]

But are there other vectors in \(N(A)\)?
Let \(v \in N(A)\) \Rightarrow for all \(j\),
\[
v_{j-1} - 2v_j + v_{j+1} = 0
\]
where the indices wrap around
or \(v_j = \frac{1}{2}(v_{j-1} + v_{j+1})\) avg. of its neighbors

\[\Rightarrow v_j\text{ can't have any local maxima}\]

\[\Rightarrow v_j \text{ is constant, } v \in \text{Span}((1, 1, ..., 1))\]
\[\Rightarrow N(A) \subseteq \text{Span}((1, 1, ..., 1))\]
\[\Rightarrow N(A^T) = \text{Span}((1, 1, ..., 1)).\checkmark\]

Question: What is \(R(A)\)? (Note \(A = A^T\))

Question: Can you characterize the nullspaces of diagonally dominant matrices?

Linear Transformations

Why matrices??

Why matrix multiplication?

(Why do only square matrices have inverses?)

Definition: A function \(f: \mathcal{U} \rightarrow \mathcal{V}\) between two vector spaces \(\mathcal{U}\) and \(\mathcal{V}\) (with the same underlying field) is linear if
\[
f(\alpha \mathbf{u}) = \alpha f(\mathbf{u}) \quad \text{for all vectors } \mathbf{u} \in \mathcal{U}
\]
and \(f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})\) for all \(\mathbf{u}, \mathbf{v} \in \mathcal{U}\).

Examples: For \(\mathcal{U} = \mathcal{V} = \mathbb{R}^2\),
- \(f(x, y) = (0, 0)\) \(\checkmark\)
- \(f(\cos \theta, \sin \theta) = (\cos \theta \mathbf{u} - \sin \theta \mathbf{v})\) \(\checkmark\)
Examples: for \(u, v \in \mathbb{R}^2 \),
- \(f(x, y) = (0, 0) \)
- \(f \) a rotation by \(\theta \) : \(f(x, y) = (\cos \theta x - \sin \theta y, \sin \theta x + \cos \theta y) \)
- \(f(x, y) = (x^2, \sin y) \) not linear
- \(f(x, y) = (1 + x, y) \) not linear

One more example: Let \(\mathcal{U} = \mathcal{V} \) = space of polynomials in \(x \) of arbitrary degree, e.g. \(a + bx + cx^2 \).
(\text{This is a vector space; it is closed under addition and under multiplication by real numbers.})

For a polynomial \(p \), let
\[
f(p) = (2 + 3x) \cdot p
\]
This is a linear transformation!

We'll see lots more examples later (e.g., differentiation, ...)

\[\text{LINEAR TRANSFORMATIONS} \quad \uparrow \quad \text{MATRICES}\]

We'll see the correspondence today for \(\mathcal{U} = \mathbb{R}^n, \mathcal{V} = \mathbb{R}^m \), and generalize it to arbitrary vector spaces next week.

Theorem 1: Let \(A \in \mathbb{R}^{m \times n} \) be an \(m \times n \) real matrix.
Define \(f : \mathbb{R}^n \to \mathbb{R}^m \) by
\[
f(u) = Au
\]
(left-multiplication by \(A \)).

Then \(f \) is a linear transformation.

Proof: \(f(au) = A \cdot (au) = a \cdot (Au) = af(u) \)
\[
f(u + v) = A \cdot (u + v) = Au + Av = f(u) + f(v)
\]
\(\square \)

Theorem 2: Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be any linear transformation.
Then there exists an \(m \times n \) matrix \(A \) such that
\[
f(u) = Au
\]

Proof: Let \(e_j = (0, 0, \ldots, 1, 0, \ldots, 0) \in \mathbb{R}^n \).

Let
\[
A = \begin{pmatrix}
f(e_1) & f(e_2) & \cdots & f(e_n)
\end{pmatrix}
\]
its \(j \)-th column is \(f(e_j) \).

We claim that \(f(u) = Au \) for any \(u \in \mathbb{R}^n \). Indeed,
\[
u = (u_1, u_2, u_3, \ldots, u_n)
\]
\[= u_1 e_1 + u_2 e_2 + \cdots + u_n e_n \]
\[\Rightarrow f(u) = u_1 f(e_1) + u_2 f(e_2) + \cdots + u_n f(e_n) \]
by applying the linearity property repeatedly.

The right-hand side is
\[A \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = Au. \]

These theorems are why matrix-vector multiplication is defined the way it is.

What about matrix-matrix multiplication?

MATRIX MULTIPLICATION ⇐ LINEAR FUNCTION COMPOSITION

\[\begin{array}{ccc}
\mathbb{R}^m & \overset{f}{\longrightarrow} & \mathbb{R}^n \\
\overset{g}{\longrightarrow} & \mathbb{R}^r
\end{array} \]

\[f(u) = Au \quad g(y) = By \]
\[g(f(u)) = B \cdot A \cdot u \]

How to visualize matrices

I. \(2 \times 2\) matrices as linear transformations

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad A^T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \]

Claim: Any \(2 \times 2\) matrix can be expressed as a product of shearing and scaling matrices, e.g.,
\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix} \]
\((a, b, c, d) \neq (0, 0, 0, 0) \)

Proof: Starting with any \(2 \times 2\) matrix \((a, b, c, d)\), G.E. row operations change it to a matrix of the form either
\[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & * \\ 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \]

\[\begin{pmatrix} & & \\ & & & \end{pmatrix} \begin{pmatrix} & \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} \begin{pmatrix} & \end{pmatrix} \begin{pmatrix} & \\ & \end{pmatrix} \]

\[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
These final matrices are $S(0,0), S(1,1), S(1,0)$. Row operations (scaling a row, adding one row to another) can be implemented by multiplying on the left by A, A^T or $S(a,p)$. Column operations by right-multiplying. Therefore we can get from the end $S(0,0), S(1,1)$ or $S(1,0)$ to the beginning (a, b) by left- or right-multiplying by the generator matrices.

Exercise: Generalize this claim to $n \times n$ matrices. Using row and column operations, acting on only two coordinates at a time, any $n \times n$ matrix can be reduced to the form

\[
\begin{pmatrix}
1 & & & \\
 & \ddots & & \\
0 & & \ddots & \\
0 & & & 0
\end{pmatrix}.
\]

II. The geometry of linear transformations

Let A be an $m \times n$ real matrix.

Let's refine this picture ...
Observations:

1. If $x, y \in \text{N}(A)$, then $Ax = Ay$. Graphically,

 All points on this line are mapped to the same point.

In our heads, we can thus break A into two steps:

1. First map y to x, i.e., take a point and move it parallel to $\text{N}(A)$ to get to $\text{N}(A)^\perp$. This is a projection; it flattens the space to $\text{N}(A)^\perp$.

2. Map x to Ax.

2. If x, z are distinct points in $\text{N}(A)^\perp$, then $Ax \neq Az$.

 (Because if $Ax = Az$, then $x - z \in \text{N}(A)$.)

Thus A is a 1-to-1 map $\text{N}(A)^\perp \rightarrow \text{R}(A)$, so restricted to $\text{N}(A)^\perp$ it is actually invertible...

\[\text{This picture is not yet complete. For example, Homework 2,} \]
Matrix and function inverses

Definition: A function $f : D \rightarrow C$ is invertible if every point in C is the image of exactly one point in D.

The inverse function $f^{-1} : C \rightarrow D$ takes each point in C to its unique preimage.

Equivalently, f^{-1} satisfies $f^{-1} \circ f = \text{identity on } D$
$f \circ f^{-1} = \text{identity on } C$

Exercise: Prove that the inverse of a linear function, if it exists, is also linear.

Definition: The inverse of a matrix A

is a matrix B that satisfies $BA = \text{the identity matrix}$ and $AB = \text{the identity matrix}$.

Observe: Not every matrix is invertible, e.g.,
$A = (0)$ is not invertible.

A matrix that is not invertible is called singular.

If an inverse exists, then it is unique.

Proof: Assume B and C are both inverses of A.
Consider BAC.

BAC
\[
C = (BA)^T C \quad \Rightarrow \quad B(AC) = B \quad \Rightarrow \quad B = C
\]

Example: The 2\times2 matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is invertible/nonsingular if and only if \(ad-bc \neq 0 \). The inverse is given by
\[
A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.
\]
(The proof is an exercise.)

Question: How to compute the inverse of a matrix?

Gaussian elimination, of course...

When is a matrix invertible?

Lemma 1: If \(N(A) \neq \emptyset \), then \(A \) is not invertible.

Proof: Take \(y \in N(A), y \neq 0 \).

Then the point \(0 \) has two preimages, so \(A \) is not invertible.

Lemma 2: If \(A \) is an \(m \times n \) matrix with \(m \leq n \), then \(N(A) \neq \emptyset \).

Corollary: Only square matrices can be invertible.

Proof: Let \(A \) be an \(m \times n \) matrix.

\[
\begin{array}{ll}
\text{if} & m < n : \quad N(A) \neq \emptyset \quad \text{(Lemma 2)} \\
& \Rightarrow A \text{ not invertible (Lemma 1)} \checkmark \\
\text{if} & m \geq n : \quad \text{Assume } A^T \text{ exists, an } n \times m \text{ matrix.} \\
& \Rightarrow N(A^T) \neq \emptyset \quad \text{(Lemma 2)} \\
& \Rightarrow A^T \text{ not invertible (Lemma 1)} \\
& \Rightarrow \text{contradiction, since } (A^T)^T = A. \quad \checkmark
\end{array}
\]

Proof of Lemma 2 (\(m < n \Rightarrow N(A) \neq \emptyset \)).

Applying Gaussian elimination to \(A \) in order to solve for the nullspace results in a matrix like

\[
\begin{pmatrix}
\vdots & \vdots & \vdots & \vdots \\
\alpha & \beta & \gamma & \delta \\
\end{pmatrix}
\]

The point is that there are at most \(m \) pivots. Since \(m < n \), there are necessarily at least \(n-m \geq 1 \) free variables, so the nullspace is infinite. \(\checkmark \)
Theorem: An $m \times n$ matrix A is invertible if and only if $m = n$ and $N(A) = \{0\}$.

Proof:

(\Rightarrow) If A is invertible, then we have just shown that $m = n$ and $N(A) = \{0\}$.

(\Leftarrow) Follows from:

Lemma 3: For an $n \times n$ square matrix A,

$$N(A) = \{0\} \iff R(A) = \mathbb{R}^n.$$

Proof: As usual, use Gaussian elimination.

$$A = G \ U$$

A is upper triangular.

If U has n pivots:

U = identity, so $A = G \ U$ is invertible with $N(A) = \{0\}$, $R(A) = \mathbb{R}^n$.

If U has $r < n$ pivots:

$N(U) \neq \{0\}$.

$N(A) = N(U) \neq \{0\}$

If $R(A) = \mathbb{R}^n$, then

$R(U) = G' \ (R(A)) = \mathbb{R}^n$. But that's impossible.

Note: \square

Example:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$N(A) = \text{Span}(e_1)$ but $R(A) = \text{everything}$.

EE 441 Page 10