8/10/11 CS 360 Lecture 17: Reductions

Last time: Decidability theory, Universal Turing machine

Goal in complexity theory: Classify problems/languages by computational hardness

- Decidably simple problems can be extremely hard to solve, or unsolvable!
- Especially those involving TMs since they can manipulate and simulate other TMs (there's no universal DFA or PDA).

Examples:

1. \(L_{DFA} = \{ <M, w> \mid M \text{ is a DFA} \} \) is decidable
 \[L_{PDA} = \{ <M, w> \mid M \text{ is a PDA} \} \] is decidable

 Why? Simulate the DFA. The simulation will halt after \(2^L \) steps.

 PDAs, though, can make \(\epsilon \)-moves (in addition to being non-deterministic), and might do so forever...

2. The Universal language
 \(L_u = \{ <M, w> \mid M \text{ is a Turing machine, } w \in L(M) \} \)
 is recursively enumerable but not decidable

 Why? RE, since the universal T.M. can simulate \(M \) on \(w \)

 Not decidable: If \(Au \) is an algorithm (halting T.M.) for \(L_u \), let
 \(Au : \) On input \(<M> \):
 Run \(Au(M, <M>) \)
 Accept if reject, reject if accepts.

 Running \(Au \) on its own encoding \(<Au> \) gives a contradiction!
Today: More examples of undecidable problems based on reductions

Example 1: Let $\text{HALT} = \{ <M, w> \mid M \text{ is a T.M., and } M \text{ halts on input } w \}$

Theorem: HALT is recursively enumerable and not decidable.

Proof: For $\text{HALT} \neq \emptyset$, use the universal T.M. to simulate M.

Assume HALT is decidable, with algorithm R.

Based on this algorithm, we construct an algorithm for L_{ALG}, which is a contradiction.

Algorithm S: On input $<M, w>$:
1. Run R on $<M, w>$.
2. If R rejects, then reject (M runs forever on w)
3. If R accepts, then simulate M on w until it halts
4. If M has accepted, accept. If M has rejected, reject.

Corollary: $\text{L}_{\text{ALG}} = \{ <M, w> \mid M \text{ does not halt on input } w \}$ is not recursively enumerable.
Proof: Although L_{ALG} is not the complement of HALT, it is close enough. Running the Turing machine for HALT in parallel with a Turing machine for L_{ALG} would give an algorithm for HALT, a contradiction.

Example 2: $\text{L}_{\text{ALG}} = \{ <M> \mid M \text{ is a T.M. that halts on every input} \}$ (i.e., an algorithm)

Theorem: L_{ALG} is not recursively enumerable (its complement is).

Proof: Assume, for contradiction, we have a T.M. R for L_{ALG}.

Turing machine S: On input $<M, w>$, with M a T.M.:
1. Write down the encoding $<N>$ for the following T.M.:
 "N: On input x:
 1. Simulate M on input w for $|x|$ time steps.
 2. Halt if M is not yet finished.
 Otherwise loop forever."
2. Run R on this encoding; output $R(<N>)$.
Then N halts on every input if and only if $M(w)$ runs forever.
Therefore S is a Turing machine for HALT, a contradiction!
Example 3 Decision properties for machines

- **A** Fix \(w \in \Sigma^* \). Is \(w \in L(M) \)?
 - \(\text{M a DFA} \) is decidable
 - \(\text{M a PDA} \) is decidable
 - \(\text{M a T.M.} \) RE, not decidable
 - not R.E.
 - Rec. Enum.
 - not even R.E.

- **B** Is \(L(M) \) empty?
 - \(L(M) \) nonempty?
 - \(L(M) \) infinite?
 - \(L(M_1) = L(M_2) \) ?

- **C** Emptiness/nonemptiness:
 - **DFA**: To decide whether the language of a DFA is nonempty, run a graph traversal algorithm to see whether a final state is reachable from the initial state. Thus
 \[
 \text{Lempty, DFA} = \{ <M> | M \text{ is a DFA, } L(M) = \emptyset \}
 \]
 \[
 \text{Lnonempty, DFA} = \{ <M> | M \text{ is a DFA, } L(M) \neq \emptyset \}
 \]
 are both decidable languages.
 - **PDA**: For a PDA, convert it to a context-free grammar, and check whether the start symbol is generating.
 - **Turing machine**: Let
 \[
 \text{Lempty} = \{ <M> | M \text{ is a T.M., } L(M) \text{ is empty} \}
 \]
 \[
 \text{Lnonempty} = \{ <M> | M \text{ is a T.M., } L(M) \text{ is nonempty} \}
 \]
 - **Claim 1**: \(\text{Lnonempty} \) is recursively enumerable.
 - **Proof**: There is a nondeterministic TM, for \(\text{Lnonempty} \):
 On input \(<M> \) a T.M.
 1. Guess a string \(w \).
 2. Run \(M \) on \(w \) and accept if \(M \) accepts.
 - **Claim 2**: \(\text{Lempty} \) is not recursively enumerable.
 - **Proof**: Idea: Reduce from \(\text{Lnonempty} \).
 Say we have a procedure (Turing machine) for \(\text{Lempty} \).
 We use this to get a procedure for \(\{ <M, w> | w \notin L(M) \} \), contradicting
 On input \(<M, w> \), run our procedure on the following T.M. \(N \):
 \(N \) discards its input, and simply runs \(M \) on \(w \). Then \(L(N) \) is empty if and only if \(w \notin L(M) \).