Recall:

- Turing machine

Def. Algorithm = Halting Turing machine

Def. A language is
- Turing recognizable/recursive if it is the language of a Turing machine
- Decidable/recursive if it is the language of a halting Turing machine (algorithm)

The Turing machine model is
- powerful (can simulate PDAs, general-purpose computers), and
- robust (modifying the model, e.g., allowing multiple tracks or multiple tapes, does not change its power).

Exercise: Explain how a standard Turing machine can simulate a 2-dimensional "tape" on which read/write head can move up/down/left/right.

Exercise: Show that a single-tape T.M. that cannot overwrite the input string can only recognize regular languages.

Today: Universal Turing machine - can simulate all other TMs

Undecidable problems
Why "recursively enumerable"?

Theorem: A language is recursively enumerable if and only if some enumerator prints a list of all the strings in the language.

Proof:

Easy direction \(\Leftarrow \): Assume we have an enumerator that enumerates the strings of \(L \). Let \(M \) be the following Turing machine:

\(M: \) On input \(x \):

1. Run the enumerator. Every time it prints a string, compare it to \(x \).
2. If \(x \) ever appears, accept.

Harder direction \(\Rightarrow \): Let \(M \) be a Turing machine for language \(L \). Enumerator \(E \):

For \(k = 0, 1, 2, \ldots \):

- Simulate \(M \) for \(k \) steps on each string in \(\Sigma^* \).
- If any computations accept, print the string.
- Any string that is eventually accepted will eventually be printed.
- Effectively, parallel simulation of \(M \) on all possible inputs.

Exercise: A language is decidable if and only if some enumerator prints it out in lexicographic order.
Example: The set of decidable languages is closed under:
- union
- concatenation
- star
- intersection
- complementation.

Example: The set of recursively enumerable languages is closed under:
- union
- concatenation
- star
- intersection.

Lemma: L_1, L_2 decidable
$\Rightarrow L_1 \cup L_2$ decidable.

Proof:
Simulate the two algorithms in series. When A_i halts in a non-final state, clean up the tape and transition to A_0's start state.\square

Lemma: L_1, L_2 recursively enum.
$\Rightarrow L_1 \cup L_2$ is r.e.

Proof:
Simulate the two Turing machines in parallel. Accept if either accepts.\square

Lemma: L decidable $\Rightarrow \overline{L}$ decidable.

Proof:

Lemma: L, \overline{L} rec. enum.
$\Rightarrow L$ decidable.

Proof:

Corollary: For a language L, either
- both L, \overline{L} are decidable/recursive, or
- neither L nor \overline{L} is rec. enum., or
- one is rec. enum., but not decidable, other is not rec. enum.

<table>
<thead>
<tr>
<th>Decidable</th>
<th>rec. enum.</th>
<th>not decidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Universal Turing machine

Definition: Universal language
\[L_U = \{<M, \omega> | M \text{ is the encoding of a Turing machine, } \omega \text{ is an input, and } \omega \in L(M) \} \]

Exercise: Specify some Turing machine encoding/programming language.
(The details are not so important)

Example answer: Let \(M \) be a Turing machine, with states \(Q = \{q_1, q_2, \ldots, q_n\} \). Assume (without loss of generality) \(q_1 \) is initial state, \(F = \{q_3\} \).
Let \(\omega_1 = \varepsilon \) and \(\omega_2, \ldots, \omega_k \) index tape alphabet \(\Gamma \).

\begin{align*}
\text{Encoding} & \quad 0^410^210^110 \\
\text{Transition} & \quad \sigma(q_i, \omega_1) = (q_k, \omega_2, \lambda) \\
\text{Encoding} & \quad 0^410^210^110^2100 \\
\text{Transition} & \quad \sigma(q_i, \omega_2) = (q_k, \omega_2, \text{right})
\end{align*}

\[<M> = 11 \text{<code>} 11 \text{<code>} 11 \ldots \]

Encodings of transitions

Note: Turing machines have multiple encodings.
Not every string is a valid encoding.

Theorem: The universal language \(L_U \) is recursively enumerable.
That is, there is a Turing machine \(V \) such that \(L_U = L(V) \).

(Morally, "Microsoft Theorem": General-purpose computers exist, don't need specific hardware devices for every problem, use software instead)

Proof sketch:

High-level description: On input \(<M, \omega> \) for a T.M. \(M \) and string \(\omega \), simulate \(M \) on input \(\omega \), and accept if \(M \) ever enters an accepting state.

Implementation: Use four tapes:
1. contains \(<M> \) (read only)
2. current state \(q_i \) of \(M \)
3. for simulating \(M \)'s tape
4. scratch space

Transitions are straightforward... [HMU 9.2.8]

Note: This simulation is efficient (linear time). If it took exponential time, the software industry would not exist.
Theorem: The universal language L_u is undecidable.

Proof: Assume, for contradiction, that L_u is decidable.
Let V be a halting Turing machine for L_u.
Let W be as follows:
On input $\langle M \rangle$ the encoding of a Turing machine M:
1. Run V on input $\langle M, \langle M \rangle \rangle$
2. Accept if and only if V rejects.

Consider giving W its own encoding.
$\langle W \rangle \in L(W) \iff \langle W, \langle W \rangle \rangle \notin L(V)$ [def of W]

$\iff \langle W \rangle \notin L(W)$ [def. of V]
a contradiction!

The main idea of this proof is diagonalization [EHMU 9.17]