Last time: defined Turing machines [H-M-U Chapter 8.2]
programming techniques [H-M-U 8.3]
- subroutines
- multiple tracks for storing data on the tape
- storage in the finite state memory
 idea: think of a state as labeled by
(q, X, ..., X_k)
control
 state finite amount of memory
 unlike writing to the tape, this memory
 is always immediately accessible, like
 CPU registers.

Example: \(L = \{ x \in \{0, 1\}^* \mid x \leq 1 \} \)

Enhancements of Turing machines
1. Two-way infinite tape
2. Multiple heads
3. Multi-tape Turing machine
4. Nondeterministic Turing machine

Main claim: A standard Turing machine can simulate a
Turing machine with these extra features.

⇒ Justifies the Church-Turing thesis: a Turing machine is
the most general model of computation.
2-way tapes

\[
\begin{array}{c}
| _ _ _ | _ _ _ | _ _ _ |
\end{array}
\]

Thm: Given 2-way TM \(M_2 \), a 1-way TM \(M_1 \) such that \(L(M_1) = L(M_2) \).

Proof sketch:

\(M_1 \) simulates \(M_2 \) using two tracks

\[
\begin{array}{cccccccc}
\# & B & B & B & \cdots & B \\
\# & w_1 & w_2 & w_3 & \cdots & w_n & b & \text{blanks}
\end{array}
\]

\(M_2 \) \hspace{1cm} \(M_1 \)

state

\(q \rightarrow (q, w), (q, L) \) upper lever

\(\Delta = \mathbb{Q} \times \Sigma \)

\(\Gamma' = \{ [x], 1x, y \in \Gamma \} \cup \{ \} \)

\(\Gamma' = \{ (q, w), (q, L) | q \in \mathbb{Q} \} \)

transitions

\(s'(q, w) = (q, b, R) \)

\(s'((q, L), [x]) = (q, L), [x] \) \(R \)

\(s'((q, w), [x]) = (q, w), [x] \) \(R \)

also \(\forall q \in \mathbb{Q} \) \(s((q, w), [x], [y]) = (q, w), [y] \) \(R \)

\(s((q, w), [x], [y]) = (q, w), [y] \) \(R \)

to switch tracks

Multihead T. M

\[
\begin{array}{c}
\text{finite state}
\end{array}
\]

independent heads w/ independent transitions

e.g. \(s((q, h_1, h_2, \ldots, h_k) = (p, (w_1, m_1), \ldots, (w_k, m_k)) \)

\(h_j \in \Gamma' \) head \(j \)'s cell

\(w_j \in \Gamma' \) what to write over \(h_j \)

\(m_j \in \Gamma' \) move \(h_j \)
Theorem: Given k-head T_M. M_k, and a 1-head T_M. M_1, s.t. $L(M_1) = L(M_k)$.

Idea:
Use $k+1$ tracks.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>*</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>*</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Tape</td>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
<td></td>
</tr>
</tbody>
</table>

For each transition of M_k, make sequence of moves:
Start at leftmost cell

1. Sweep right: Until a * has been seen in each track, memorizing each by passing a *
2. Sweep left: Changing head positions and writing the *s following M_k's rule
Note: you will sometimes have to jog right one step to move a * over

Multitape T_M:

Simulation:
Use 2k tracks

Simulation speed: These enhancements affect efficiency, if not expressive power.

Claim: If M_k halts in $\leq T(n)$ steps on inputs of length n, then M_1 halts in $O(T(n)^3)$ steps.

Proof: Each simulated step requires sweeping entirely across the tape.

The number of non-empty cells on the tape is $\leq T(n)$. ✦
Nondeterministic Turing machines
allows multiple transitions
\[f : Q \times \Sigma \rightarrow 2^{Q \times \Sigma \times \{L, R\}} \]
\[(q, a) \rightarrow \{(p_1, b_1, D_1), ..., (p_r, b_r, D_r)\} \]

execution tree:
- (run forever)
- (crash)
- \(\bowtie\) accept!

machine accepts if any branch of execution leads to accepting state.

Theorem: Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof: Idea: Let \(N \) be a nondeterministic TM.
Construct \(D \) a deterministic TM, that simulates \(N \)
along all possible branches of \(N \)'s execution tree.
\(D \) accepts if it ever finds an accepting state.

Key point: Use breadth-first search, not depth-first search.
With breadth-first search, any node in an infinite tree will be explored.

Implementation: Use a 3-tape machine:
- \(D \)
- \(\text{input tape} \)
- \(\text{simulation tape} \)
- \(\text{execution tree address tape} \)

Let \(b = \max_{q \in Q} |\delta(q, x)| = \max \text{# of transition choices ever available} \)
\(\max \text{# of children of any node} \)

addresses \(\in \{1, 2, ..., b\}^* \)
\(\epsilon = \text{root} \)
\(3, 2, 1 = \text{accepting state} \)
\(2, 1 = \text{invalid state} \)

1. Initially tape 1 has input \(w \), tapes 2 and 3 are empty.
2. Copy tape 1 to tape 2.
3. Use tape 2 to simulate \(N \) along the computation branch determined
by tape 3. Next symbol on tape 3 gives choice to make. If choice is invalid,
\(N \) rejects, or no symbols remain, go to 4. If \(N \) accepts, then accept.
4. Increment tape 3 to lex.-next string. Clear tape 2. Go to 3.
Simulation Efficiency

Def. Halting TM = TM that accepts or rejects (by getting stuck) any input so within a finite # of moves.

Def. NTM N has running time T(n) if it halts in
\[\leq T(n) \] transitions, on any input of length n, for all possible seq. of transitions.
(Also applies to DTM.)

Def. Polynomial time if \(T(n) \leq n^c \) for some fixed \(c \).

eg. \(n^{1000} \), \(n^{\log n} \), \(2^n \times 1.00001^n \times \)

Def. Efficient TM = any NTM with poly-running time.

Earlier simulations preserved efficiency.

but for simulating an NTM with time \(O(T(n) \cdot r(n)) \) not polynomial.

- In worst case must try all possible transition sequences.

Open problem: Can efficient NTMs be efficiently simulated? P = NP?

Decidability Theory

Def: Algorithm = Halting T.M.

Def: Procedure = TM (which may not halt).

(Always halts in finite time for all inputs)

- Yes
- No

Recursive lang. = accepted by some alg.

Undecidable problem = language for which no alg. exists.

Observe: No difference between NTM & DTM for these defas.

\(L \text{ is r.e. } \Leftrightarrow \exists \text{ TM that output everything in some order.} \)