Goal: Define machine that accepts context-free languages (CFLs), useful in designing parsers from context-free grammars (CFGs).

Three main models of computation we study (plus variants):

1. **Finite automata** (DFAs, NFA's, ε-NFA's)

 - Transition function: δ(q₀, x)
 - Configuration: (qᵢ, xᵢ, ..., xₙ)
 - Initial state: q₀
 - Accepting state: q_f

2. **Push-down automaton** = (ε-nondeterministic) finite automaton with a stack for extra memory

 - Input: x
 - Finite state control
 - Accept (x ∈ L)
 - Reject (x ∉ L)
 - Stack: Z₀, top of stack Z
 - Transition: δ(q₀, x) = q₁
 - Push: P and push Zₓ

3. **Turing machine** = finite state controller with read/write access to the input tape (of unbounded length)

 - Input tape: x₁, x₂, ..., xₙ
Pushdown Automata (PDA)

* the biggest problem with finite automata was insufficient memory
 physically unrealistic but disagrees with our intuition for ideal computation
 (we should be able to decide \(L = \{ 0^n1^n \mid n \geq 0 \} \))

- let's add memory
 - **Stack**
 - can push things in, or **pop things out**
 - but only off the **top** (unlike, say, **RAM**)
 - **unbounded**
 - **Control** (**E-NFA**)

 Transitions Depend on
 \[
 \begin{aligned}
 \text{Effect} & \quad \text{· Input character} \\
 & \quad \text{· Current state} \\
 & \quad \text{· Stack top} \\
 & \quad \text{· New state} \\
 & \quad \text{· Replace stack top by some string}
 \end{aligned}
 \]

Example \(L = \{ 0^n1^n \mid n \geq 0 \} \)

Idea

* While Input = 0
 - Push A on stack
 * While Input = 1
 - Pop A from stack

Accept when input is over, no A's left on the stack

![Diagram of PDA transitions](attachment:diagram.png)

Example (state, remaining input, stack)

\[
\begin{align*}
(p, 0011, 20) & \rightarrow (p, 011, A20) \\
(p, 11, A20) & \rightarrow (q, 1, A20) \\
(q, \varepsilon, Z_0) & \rightarrow (q, \varepsilon, \varepsilon) \\
(r, \varepsilon, \varepsilon) & \rightarrow \text{ACCEPT} \\
\end{align*}
\]
Definition: A pushdown automaton (PDA) is a tuple
\[P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \]
where:
- \(Q \) = finite set of states
- \(\Sigma \) = finite input alphabet
- \(\Gamma \) = finite stack alphabet
- \(q_0 \in Q \) start state
- \(Z_0 \in \Gamma \) start symbol
- \(F \subseteq Q \) accepting states

Transition function \(\delta \)
\[\delta(q, a, X) = (p, \lambda) \]
where \(q, p \in Q, a \in \Sigma, X \in \Gamma, \lambda \in \Gamma^* \)

means In state \(q \), if input being read is \(a \) and stack top is \(X \),
then go to state \(p \), replace \(X \) by \(a \) on stack

Example: Our previous PDA, formally
\(\Sigma = \{ 0, 1 \}, \Gamma = \{ \epsilon, A, 0, 3 \}, Q = \{ p, q, r \}, F = \{ r \} \)

Transitions:
\[\delta(p, 0, Z_0) = (p, AZ_0) \quad \text{on input } 0, \]
\[\delta(p, 0, A) = (p, AA) \quad \text{add A to stack} \]
\[\delta(p, 1, A) = (q, \epsilon) \quad \text{on input 1, move to q} \]
\[\delta(q, 1, A) = (q, \epsilon) \quad \text{on input 1, consume A} \]
\[\delta(q, \epsilon, Z_0) = (r, \epsilon) \quad \text{hit stack bottom} \]

Deterministic PDA: \(\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma^* \)
-the above example can be made deterministic

A general PDA is nondeterministic: \(\delta: Q \times (\Sigma \cup \{ \epsilon \}) \times \Gamma \rightarrow Q \times \Gamma^* \)
-control is like an \(\epsilon \)-NFA

Powers

Regular languages = \text{POWER}(\epsilon\text{-NFA}) < \text{POWER}(\text{DPDA}) < \text{POWER}(\text{PDA}) = \text{CFL}

Why? since can ignore the stack,
\text{POWER}(DFA) \subseteq \text{POWER}(\text{DPDA})
since \(\{ 0^n 1^m | n \geq 0 \} \) is not regular,
\text{POWER}(DFA) \neq \text{POWER}(\text{DPDA})

\text{Unlike for finite-state automata}

Example: \(L = \{ x \epsilon \{ a, b \}^* | x \epsilon \{ 0, 1 \}^* \} \)
is accepted by a PDA but by no DPDA; it can't guess where \(x \) ends and \(x \epsilon \) begins.
\(\{ x2x^2 | x \epsilon \{ 0, 1 \}^* \} \) has DPDA.
Example \[L = \{ w w^R \mid w \in \{a, b\}^* \} \]

Goal: Construct PDA \(M \) for \(L \)

Idea: In state \(q_0 \), push \(x \) onto the stack, one by one

- Guess midpoint and \(\varepsilon \)-move to \(q_1 \)
- State \(q_1 \), match \(w^R \) with stack

Observe: Stack will pop \(w \) in reverse order, allowing matching \(w \) with \(w^R \)

- Guess midpoint
 - \(\varepsilon, a/A \)
 - \(\varepsilon, b/B \)
 - \(\varepsilon, \varepsilon/\varepsilon \)

- On input \(a \)
 - Add \(A \) to stack

Example: On input \(aabbaa \),

\[(q_0, aabbaa, Z_0) \]

\[\Rightarrow (q_0, aabbaa, A Z_0) \]

\[\Rightarrow (q_1, aabbaa, A Z_0) \]

\[\Rightarrow (q_0, baa, A A Z_0) \]

\[\Rightarrow (q_1, baa, BAAZ_0) \]

\[\Rightarrow (q_1, a, AA Z_0) \]

\[\Rightarrow (q_1, a, A Z_0) \]

\[\Rightarrow (q_1, \varepsilon, Z_0) \]

\[\Rightarrow (q_2, \varepsilon, \varepsilon) \]

Accept

Of course other execution traces are possible since \(M \) is nondeterministic.
Example: \(L = \{ x \in \{0,1\}^* : x \text{ has an equal number of 0s and 1s} \} \)

Idea: Make sure the stack is always either

\(A^n Z^o \) or \(B^n Z^o \)

where \(n \) is the number of extra 0s that have been seen

(ie in the first case, or extra 1s in the second case)

Exercise: \(L = \{ x \in \{0,1\}^* : x \text{ has twice as many 0s as 1s} \} \)

CFG: \(S \rightarrow E | SOS | SOS | SISOS | SISOSOS \)

PDA?

Main Theorem for PDAs:

For any language \(L \subseteq \Sigma^* \),

there exists a context-free grammar that generates \(L \)

if and only if

there exists a push-down automaton that accepts \(L \) (ie., recognizes \(L \))

Thus \(\text{POWER}(\text{PDAs}) = \text{POWER}(\text{CFGs}) = \text{context-free languages} \)

(analogous to \(\text{POWER}(\text{DFAs}) = \text{POWER}(\text{REGs}) = \text{regular languages} \))

Two directions for the proof:

1. Turn a CFG \(G \) into a PDA \(M \)
2. Turn a PDA into a CFG

Two main ingredients in the proof:

- Chomsky normal form for CFGs
- Equivalence between empty stack acceptance and final state acceptance
Modes of PDA Acceptance

By Final State: when input is over, in final state
final state language \(L(M) \)
\[
L(M) = \{ x \in \Sigma^* \mid (q_0, x, z_0) \xrightarrow{*} (p, \varepsilon, \varepsilon) \text{ where } p \in F, \varepsilon \in \Gamma^* \}
\]

By Empty Stack: when input is over, stack is empty
empty-stack language \(N(M) \)
\[
N(M) = \{ x \in \Sigma^* \mid (q_0, x, z_0) \xrightarrow{*} (p, \varepsilon, \varepsilon) \text{ for some } p \in Q \}
\]

Either mode gives the same power:

Theorem: \(L = L(M_1) \) for some PDA \(M_1 \)
if and only if
\(L = N(M_2) \) for some PDA \(M_2 \).