Chomsky normal form EXAMPLE

\[G : S \rightarrow \gamma \varepsilon \mid z z z \]
\[X \rightarrow \varepsilon \]
\[Y \rightarrow X Y \]
\[Z \rightarrow \varepsilon \mid a Z \]

1. Eliminate useless symbols
 2. Eliminate symbols that cannot generate a terminal string
 \[G' : S \rightarrow z z z \]
 \[X \rightarrow \varepsilon \]
 \[Z \rightarrow \varepsilon \mid a Z \]

3. Eliminate symbols that are not reachable (e.g., \(X \))
 \[G'' : S \rightarrow z z z \]
 \[Z \rightarrow \varepsilon \mid a Z \]

4. Eliminate \(\varepsilon \) productions (\(Z \rightarrow \varepsilon \), \(S \rightarrow \varepsilon \))
 \[G''' : S \rightarrow z z z \mid z z \mid a Z \mid a \]
 \[Z \rightarrow a Z \mid a \]

5. Eliminate unit productions (\(S \rightarrow z \))
 \[G'''' : S \rightarrow B Z \mid z z \mid A Z \mid a \]
 \[B \rightarrow z z \]
 \[Z \rightarrow A Z \mid a \]
 \[A \rightarrow a \]

This is the CNF form grammar that we obtain mechanically. Looking closer, it can be simplified to

\[S \rightarrow a \mid s s \]

with \(L(S) = L(a^*) \), compared to \(L(G) = L(a^+e) = L(a^+ \varepsilon) \).
Decision problems.

1. **Emptiness:**
 - Given: CFL L in CNF form of a CFG G.
 - Question: Is $L(G) = \emptyset$?
 - Idea: If $L(G) = \emptyset$ then S is not generating.
 - \Rightarrow S is useless.
 - Easy to check.

2. **Membership:**
 - Given: CFL L, string w.
 - Question: Is $w \in L$?
 - Idea: (Much harder than for regular languages.) Assume $L = L(G)$ for CFG G.
 1. If $w = \epsilon$, check if S is nullable.
 2. Construct a Chomsky normal form grammar G' for $L \cup \{\epsilon\}$.
 - If $\text{length}(w) = n$ then $S \Rightarrow w$ in exactly $2n-1$ steps.
 4. Try all possible derivations of length $2n-1$.
 - $V = \{V_1\cdots V_n\}$ possibilities, $10^V = \#$ productions in G'.

 Better approach:
 - Dynamic Programming $V_{ij} = \begin{cases} \text{null} & i = 0 \\ \text{true} & i = n \\ \text{false} & 0 < i < n \end{cases}$

3. **Equality:**
 - Given: CFGs G_1, G_2.
 - Question: Is $L(G_1) = L(G_2)$?
 - Claim: There is no decision procedure? (Show later)

 Remark:
 1. Easy to test equality for regular languages $L_1 = L_2 \iff (L_1 \cup \overline{L_1}) \cap (L_2 \cup \overline{L_2}) = \emptyset$.
 2. [Sennitzescues, 2001]:
 Many other undecidable properties of CFGs, but
 algorithm for deciding $L(M) = L(M')$ for deterministic PDAs M, M'.
 Deciding of $L(M) \cap L(M')$ still impossible. [Gödel 1963]
 or $L = \emptyset \Rightarrow \emptyset \subseteq L \Rightarrow \emptyset \subseteq L$.
Dynamic programming alg. to decide membership in a CFL

Take a CFG in CNF form.

Goal: For each substring $x(i:j) := x_i x_{i+1} \cdots x_j$
compute $V_{i:j} := \{ X \in V \mid X \Rightarrow x(i:j) \}$

Induction in $j-i$:

Base case $j=i$: Easy,

Induction:

$X \Rightarrow x(i:j)$

must start with $X \Rightarrow BC$

where for some k, $i \leq k \leq j$,

$0(n)$ time

where $n = |x|$

$\Rightarrow O(n^4)$ time total, if CFG size is constant.

(then also conversion to CNF is $O(n)$)
Pumping Lemma for Context-Free Languages

Question: Of \(L_1 = \{ a^n b^n \mid n \geq 1 \} \)
\(L_2 = \{ a^n b^{n+1} c^n \mid n \geq 1 \} \)
\(L_3 = \{ a^n b^{2n} c^n \mid n \geq 1 \} \)

which are CFLs?

Answer: \(L_1, L_2 \) are CFLs, \(L_3 \) is not a CFL.

Intuitively, because the number of \(b \)'s depends on its context, both to its left and right.

Pumping Lemma
Let \(L \) be a CFL.
Then there exists a constant \(N \) such that for all \(z \in L \) with \(|z| \geq N \)
can write \(z = uvwxy \) with
1) \(|vwx| \leq N \)
2) \(|v| > 0 \)
3) \(i \geq 0 \), \(uv^iwx^iy \in L \)

Application: Claim: \(L_3 = \{ a^n b^{2n} c^n \mid n \geq 1 \} \) is not a CFL.
Proof: 1) Assume \(L_3 \) is CFL and apply P.L.
2) Get constant \(N > 0 \)
3) Choose \(z = a^N b^{2N} c^N \in L_3 \)
4) Get \(u, v, w, x, y \) such that
\(z = uv^iwx^iy \) and \(|vw| \leq N \), \(|v| > 0 \)
5) We choose \(j = 0 \) and claim
\(z' = uv^iwx^iy = uv^0wxy \notin L_3 \) (contradiction)

Why? Observe: \(|vw| \leq N \) implies that either \(vwx \) has no \(c \)'s or it has no \(a \)'s
Case I: \(|vwx| \) has no \(a \)'s:
\(|z'| = |z| - |vwx| < |z| = 4N \)
but \(n_c(z') = N \), so more than \(\frac{3}{4} \) of its symbols are \(c \)'s.
Every string in \(L_3 \) has exactly \(\frac{3}{4} \) \(c \)'s, so \(z' \notin L_3 \).
Case II: \(|vwx| \) has no \(a \)'s: By a similar argument, \(z' \notin L_3 \).

Corollary: Unlike regular languages, CFLs are not necessarily closed under intersection.
\(L_3 \cap L_2 \neq \emptyset \)
Proof of the CFL Pumping Lemma:

Given CFL L

Let $G = (V, T, P, S)$ be a Chomsky normal form grammar for $L \setminus \epsilon$.

Claim: In a parse tree for G, all root-leaf paths have length at most k.

Then the yield of the tree has $\leq 2^{k+1}$ terminals.

Proof: By induction in k. Intuitively obvious since the tree is binary.

Worst cases:

- $l = 1$:
 - $V_i = A$
 - $V_{i+1} = \omega$
 - $2^{l-1} = 1$

- $l = 2$:
 - $V_i = A$
 - $V_{i+1} = B$
 - $V_{i+2} = C$
 - $2^{l-1} = 1$

- $l = 3$:
 - $V_i = A$
 - $V_{i+1} = B$
 - $V_{i+2} = E$
 - $V_{i+3} = F$
 - $2^{l-1} = 1$

Now define $k = \|V\| = \#variables$, $N = 2^k$.

Consider any $z \in L(G)$ with $\|z\| > N$.

⇒ by the claim, any parse tree T for z has a root-leaf path Q of length $q \geq k+1$.

⇒ by the pigeon-hole principle, some variable repeats along the path Q. In fact the last $k+1$ variables on Q must contain a repetition.

Let i, j be such that $q-k \leq i < j \leq q$, $V_i = V_j = A$.

Therefore $z = uvwxy$, where

$S \Rightarrow uAy \Rightarrow uvAxy \Rightarrow uvywxy$

so $A \Rightarrow vAx$, $A \Rightarrow \omega$

Hence $A \Rightarrow vAx \Rightarrow vyAx^2$

$\Rightarrow \cdots \Rightarrow vy^ixx^i \Rightarrow vy^iwx^i$

and so $i \geq 0$,

$S \Rightarrow uAy \Rightarrow uvy^iwx^iy$,

implying $uv^iwx^iy \in L(G)$.

Also: $\|z\| > N$ since CNF G has no ε or unit productions.

Finally: $\|vwxy\| \leq N = 2^k$, since $V_i = A$ has height $\leq k+1$ and so by the claim its yield $vwxy$ has length at most $2^{(k+1)-1} = 2^k$ terminals.