Review of regular languages

Def. 1: DFA $M = (Q, \Sigma, \delta, q_0, F)$

- Q: states
- Σ: alphabet
- δ: transition function
- q_0: start state
- F: final states

$\delta: Q \times \Sigma \rightarrow Q$ $\Rightarrow \hat{\delta}: Q \times \Sigma^* \rightarrow Q$

$L(M) = \{ x \in \Sigma^* | \hat{\delta}(q_0, x) \in F \}$

Deterministic finite automata model physical computing devices.

Def. 2: NFA $N = (Q, \Sigma, \delta, q_0, F)$

- $Q': Q \times \Sigma \rightarrow 2^Q$

$L(N) = \{ x \in \Sigma^* | \delta(q_0, x) \cap F \neq \emptyset \}$

Def. 3: E-NFA $\hat{\delta}: Q \times (\{ \epsilon \} \cup \Sigma) \rightarrow 2^Q$

$\hat{\delta}$ defined by ε-closure

Def. 4: Regular expression

- Literals: $\epsilon, a \in \Sigma$
- Operations: $\cdot, +, ^*$

$L(r \cdot s) = L(r) \cdot L(s)$, etc.

Theorem: Consider $L \subseteq \Sigma^*$. The following four conditions are equivalent:

1. \exists DFA $M : L(M) = L$
2. \exists NFA $N : L(N) = L$
3. \exists E-NFA $N : L(N) = L$
4. \exists regular expression $r : L(r) = L$

Def. L is a regular language if any of the above conditions hold.

Morals:

1. Regular languages can be specified either operationally (by what a FA recognizes) or syntactically (by what a regex expression generates)
2. Adding non-determinism
 - Does not increase the set of languages that can be decided, i.e., the set of problems that can be solved
 - Can be exponentially more efficient, in terms of number of states
3. To prove regularity, can use closure properties
 Exercise: For each closure property we studied, what is the overhead for applying it? (In terms of # of states for an automaton, or # of operators for a regular expression) Eg., complement
4. To prove that a language is not regular, can use Pumping Lemma
 In English: If L is a regular language and $x \in L$ is sufficiently long, then there is a nonempty substring of x (sufficiently close to the start) that can be pumped: $x = uvw$ and $uv^n w \in L$.

...
Pumping Lemma (review)

For any regular language \(L \), there exists a constant \(N \) such that for any string \(x \in L \) with \(|x| > N \), there is a decomposition \(x = uvw \) with:
- \(uv^iw \in L \) for all \(i \geq 0 \)
- \(|v| > 0 \) (i.e., \(v \neq \epsilon \))
- \(|uv| \leq N+1 \).

In English: If \(L \) is a regular language, then any sufficiently long string \(x \in L \) has a nonempty substring that can be pumped.

How small can \(N \) be, as a function of \(L \)?

From the proof, \(N = \) longest path in a DFA or NFA without any cycles (not an \(\epsilon \)-NFA)

\[\Rightarrow N = \min \# \text{states in any NFA for } L \text{ certainly works} \]

The Pumping Lemma can also be proved based on a regular expression for \(L \).

Eg., say
\[r = \epsilon + 000(\epsilon + \underbrace{1 + 111}(\epsilon + \epsilon)0^*) \]

The longest \(x \in L(r) \) that cannot be pumped is \(x = 000111011 \)

Any longer string would have to use the \(0^* \) portion of \(r \) and that part could be pumped.

\[\Rightarrow N = \# \text{of alphabet characters in } r \text{ certainly works, as a rather crude bound} \]
Context-free grammars (Ch.5)

Example: If the rules are \(A \rightarrow OA1, A \rightarrow \varepsilon \)
then can derive:
\[
\begin{align*}
A & \Rightarrow OA1 \\
& \Rightarrow O(OA1)1 = OOA111 \\
& \Rightarrow OOOA1111 \\
& \Rightarrow OOO\varepsilon 111 = 0^31^3
\end{align*}
\]
\[L(A) = \{ \text{every string derivable from } A \} = \{ 0^n1^n | n \geq 0 \} \quad \text{not regular} \]

Def: Context-free grammar \(G = (V, T, P, S) \)
- \(V = \) "variables", a finite set (each representing a set of strings)
- \(T = \) "terminal symbols" or alphabet, finite \& disjoint from \(V \)
 (the symbols that compose the strings)
- \(P = \) productions = a set of rules each of the form
 \[
 \text{Head } \rightarrow \text{ Body}
 \]
 \[\begin{align*}
 \text{\small V} & \quad \text{\small (VUT)}^* \\
 \text{\small \& variable} & \quad \text{\small \& string in variables \& terminals}
 \end{align*}\]
- \(T \)

Example: \(G = (\{A,B\}, \{0,1\}, \{A \rightarrow OA1, A \rightarrow \varepsilon \}, A) \)
Compact notation: \(A \rightarrow OA1 | \varepsilon \) means \(A \rightarrow OA1 \) and \(A \rightarrow \varepsilon \).

Derivations:
\[\Rightarrow\] means one application of a rule
- if \(A \rightarrow \beta \) is a production, then
 \[\Lambda A \beta \Rightarrow \alpha \gamma \beta \quad \text{for all } \alpha, \beta, \gamma \in (T \cup V)^*\]
\[\Rightarrow^*\] means zero or more steps of \(\Rightarrow \) (same as \(\Rightarrow^* \) vs. \(\Rightarrow \) for \(FA \)).

Def: Language of a CFG
- If \(G = (V, T, P, S) \) is a CFG, then
 \[L(G) = \{ \omega \in T^* | S \Rightarrow^* \omega \}\]
 i.e. the set of all terminal strings that can be derived from the start.

Example: If \(A \rightarrow OA1 | A1 | \varepsilon \) and \(S \rightarrow AS | \varepsilon \)
then \(L(A) = \{ 0^k1^k | k \geq 0 \} \)
\[L(S) = L(A)^* = \{ 0^{k_1}1^{k_1}0^{k_2}1^{k_2} \cdots 0^{k_m}1^{k_m} | m \geq 0, k_1 \leq k_2 \leq \cdots \leq k_m \}\]
Claim: \(L(A) = \{0^k1^k : 1 \leq k \leq 3\} \) if \(A \rightarrow OA1|A1|\)

Proof: Let \(K = \{0^k1^k : 1 \leq k \leq 3\} \). \(\text{WTS} \) \(K \subseteq L(A) \), \(L(A) \subseteq K \).

1. \(K \subseteq L(A) \): Let \(x = 0^k1^k \in K \) with \(1 \leq k \leq 3 \). \(\text{Want to show} \ x \in L(A) \), i.e., \(A \overset{*}{\Rightarrow} x \).

Claim: For all \(m, n \) with \(m \leq n \), \(A \overset{*}{\Rightarrow} 0^m1^n \)

Proof: By induction in \(n \).

- **Base case** \(n = 0 \):
 Then \(m = 0 \), \(A \overset{*}{\Rightarrow} A \) (zero steps) \(\checkmark \)

- **Induction step:**
 If \(m = 0 \), use \(A \overset{*}{\Rightarrow} A_1^{n-1} \) (by induction)
 \(\Rightarrow A_1^n \) (by \(A \rightarrow A_1 \)) \(\checkmark \)

 If \(m > 0 \), use \(A \overset{*}{\Rightarrow} 0^m1^{n-1} \) (by induction)
 \(\Rightarrow 0^m1^n \) (by \(A \rightarrow OA_1 \)) \(\checkmark \)

Hence \(K \subseteq L(A) \).

2. \(L(A) \subseteq K \): Proof by a similar induction. Main claim is

Claim: \(\{x \in \{0,1\}^* : A \overset{*}{\Rightarrow} x \text{ in } m \leq N \text{ steps}\} \)

\(\subseteq \{0^m1^n : m \leq n \leq N\} \cup \{0^m1^n : m \leq n \leq N\} \).

Example: \(S \overset{*}{\Rightarrow} SS | (s) | [s] | \varepsilon \)

generates \(L(S) = \) strings of matching parentheses

- not regular

 \(\text{e.g.,} \ (\text{(}} (\text{(}} (\text{)}) (\text{))} \in L(S) \)

 \((\text{)}} (\text{) \notin L(S) \)

Example For the regular language \(L(0^+1(0+1)^+) \), it is \(L(S) \) where

\[
\begin{align*}
S & \rightarrow A1B \\
A & \rightarrow \varepsilon | 0A \\
B & \rightarrow \varepsilon | OB | 1B
\end{align*}
\]

Theorem: Every regular language has a context-free grammar.
Theorem. Every regular language is generated by a context-free grammar.

In other words, if r is a regular expression, then there exists a CFG G such that $L(r) = L(G)$.

Proof: By the obvious induction in the number of operators of r.

- If $r = \epsilon$, use $S_r \rightarrow \epsilon$, no productions, or $S_r \rightarrow \epsilon$, respectively, to get $L(S_r) = L(r)$.

Induction step $r = r_1 r_2$.

- If $r = \epsilon$, use $S_r \rightarrow S_r S_r$.
- If $r = s + \epsilon$, use $S_r \rightarrow S_r | S_r$.
- If $r = s^*$, use $S_r \rightarrow S_r S_r | \epsilon$.

Parse Trees represent a sequence of derivations hierarchically.

Example: $G = (\{A, S\}, \{\circ, \rightarrow\}, S \rightarrow AS, S \rightarrow E, A \rightarrow E, A \rightarrow AA, A \rightarrow \epsilon, S \rightarrow AS, S \rightarrow E, S \rightarrow A | \epsilon)$

In general,

- root must be start variable
- internal nodes are variables
- leaves are terminals or ϵ
- for each internal node, it is the head and its children from left to right the body of some production

yield is $01100111E = 01100111$.

Important in applications: eg, software source code, XML document structure, STD, document type definitions.

(read Ch.5.3) parsers for programming languages: Bison & Yacc.

- Explains "Context-free" because you can expand a subtree without worrying about anything outside that subtree (its context).

- Theorem: For a CFG $G = (V, T, P, S)$, a variable $A \in V$ and a string $x \in T^*$,

$$A \Rightarrow x \quad \text{if and only if} \quad \text{there is a parse tree with root } A \text{ and yield } x.$$

(Proof by induction on tree size/# derivation steps, see [5.2.4&5.2.6].)