Computational complexity theory + physics

Classical complexity theory, informal definitions:

• \(P \) = problems solvable in polynomial time on a deterministic Turing machine.
 Example: Two \(n \times n \) matrices over a constant-size finite field can be multiplied in \(O(n^{2.376}) \) time = \(\text{poly}(n) \).

• \(\mathbf{NP} \) = "nondeterministic polynomial time" = yes/no problems where each yes instance has a proof that can be verified in polynomial time (\(\text{poly} \) in the size of the problem instance/input).

Example: Is there a \(\leq n \)-page proof of claimed mathematical statement?

Example: 3-SAT: Given a formula

\[\psi(x) = (x_1 \lor \overline{x}_1 \lor x_2) \land (x_2 \lor \overline{x}_4 \lor \overline{x}_6) \land \ldots \]

is there a boolean assignment to \(x_1, \ldots, x_n \) that satisfies all the clauses?

(Given a proof, it is easy to check, but finding the proof may be hard.)

• \(\mathbf{NP} \)-complete: hardest problems in \(\mathbf{NP} \), in a rigorous sense: for any other \(\mathbf{NP} \) problem, an instance can be turned into an instance of the \(\mathbf{NP} \)-complete problem in polynomial time.

Cook-Levin Theorem: 3-SAT is an \(\mathbf{NP} \)-complete problem.

Furthermore, Max 2-SAT is also \(\mathbf{NP} \) complete:

Given \(k \), and a formula \((x_1 \lor \overline{x}_2) \land (x_2 \lor \overline{x}_4) \land (x_3 \lor \overline{x}_1) \land \ldots\)

is there an assignment satisfying \(k \) of the clauses?

Classical condensed-matter physics also studies these constraint-satisfaction problems:

• Spin glass = weighted max 2-SAT problem with geometric locality on the constraints (frustrated magnet models)

- Survey propagation algorithm [05/02/2002] generalizes belief propagation (from statistical learning theory) — best current algorithm for random \(k \)-SAT.
Quantum complexity theory:
- BQP = "bounded-error quantum polynomial time" = problems solvable in polynomial time on a quantum computer, with error probability $\leq \frac{1}{10}$.
- QMA = like NP, problems with an efficiently verifiable proof, except the proof and verifier can both be quantum (i.e., a quantum state & a quantum computer), and error probability $\leq \frac{1}{10}$ is allowed.

conjectured relationships between these classes

classical constraint satisfaction problems \leftrightarrow quantum Hamiltonian complexity
Def. A Hamiltonian is a Hermitian matrix, $H = H^\dagger$. Its (real) eigenvalues are called energy levels.

Schrödinger’s equation: The evolution of a closed quantum system is determined by a Hamiltonian H:

$$\frac{d}{dt} |\psi(t)\rangle = -i \ H \ |\psi(t)\rangle$$

⇒ For a time-independent Hamiltonian,

$$|\psi(t)\rangle = e^{-i \ H \ t} |\psi(0)\rangle$$

(unitary)

For an n-qubit system, H is a $2^n \times 2^n$ matrix—difficult even to write down. But physically, two-particle interactions are most likely, motivating:

Def. A k-local Hamiltonian is the sum of Hamiltonians, each of which acts as the identity on all but at most k qubits.

Ex.: $H = H_{12}^{(2)} \otimes I_{345} + H_{14}^{(2)} \otimes I_{235} + H_{54}^{(2)} \otimes I_{123}$ is 2-local (no geometric locality is required).
Key physics problem: Understand the evolution of (open or closed) quantum systems. (Open system = one that interacts with an environment/bath)

1. For a closed quantum system, this is very difficult!

2. For an open quantum system (evolving, e.g., according to a Lindblad equation)

\[\dot{\rho} = -i [H, \rho] + \sum_j \left(\frac{e - \rho A_j A_j^+ - e^{+} A_j^+ A_j}{\rho A_j A_j^+ + A_j^+ A_j} \right) \]

systems empirically tend to converge (at low temperatures) to the ground state of \(H \), i.e., the lowest eigenvalue eigenvector (or at inverse temperature \(\beta \), in general to the Gibbs state \(e^{-\beta H} \))

\[\Rightarrow \text{a more approachable problem is "just" to determine the ground space, or low-energy eigenspaces for } H \]

- A problem for which quantum information techniques have proven very useful (e.g., DMRG — matrix product states)

What if we had quantum computers?

1. Simulating the dynamics of a quantum system with a local Hamiltonian is easy (although simulation understanding)

 a. If \(H \) acts on only a constant number of qubits, it is easy to apply \(e^{i H t} \) for any \(t \) — just move into a basis in which \(H \) is diagonal, apply \(\text{diag}(e^{i \lambda s}) \), and move back

 b. Lie-Trotter formula:

 \[\| e^{i(H_1 + H_2)t} - (e^{i H_1 t/n} e^{i H_2 t/n})^n \| = O(\| [H_1, H_2] \| t) \]

 \[\Rightarrow \ldots \Rightarrow \text{poly}(t, \# \text{ of terms in } H, \text{ max norm of a term}) \]

 e.g.

 break the evolution into four pieces
But finding the ground state, even of a local Hamiltonian, is not easy.

Theorem [Kitaev], last time:
It is a QMA-complete problem to decide
- Given an n-qubit 5-local Hamiltonian, and
- thresholds $a < b$ (such that $b - a > \frac{1}{n}$) for each term $|i⟩$,
- is the ground-state energy $< a$ or is it $> b$?

(If it is between a and b, algorithm cannot do anything.)
[Note: Given a purported ground state, it is easy to check the energy is low]

⇒ It is very unlikely that quantum computers can find
- ground states, or even ground-state energies,

- not necessarily a surprise, given NP-hardness of Max 2-SAT,
- a 2-local Hamiltonian problem (in which all the terms are
diagonal in the computational basis)

- in fact, the problem is QMA-complete even for 2-local
Hamiltonians with translation-invariant interactions in
two dimensions (see Gottesman, Irani 0905.2417), and
translation-invariant 1D 2-local Hamiltonians (on >2-dim.
systems, not qubits) suffice for universal adiabatic
computation (initial state encodes input)

⇒ what is it that makes physical systems tractable?
(beyond locality, dimensionality, translation invariance)
Should we care?

Construction was 5-local:
- 2 qubits for the gate, 3 for the clock
- $V_4 \otimes I_{t+1}X_{t+1} + V_4^* \otimes I_{t}X_{t+1}$

- represent 1st as $\underbrace{1_1\cdots 1}_{t}\underbrace{0\cdots 0}_{t+1}$, i.e., in memory
- $I_{t+1}X_{t}$, on valid clock states, is just $1101\cdots 0_{t+1, t+2}$ elsewhere
The locality of environmental noise processes is also what lets us protect quantum data, and to compute on it!

Example: Recall Shor's [[9, 1, 3]] QECC:

\[10\rangle = (1000\rangle + 1111\rangle)(1000\rangle + 1111\rangle)(1000\rangle + 1111\rangle) \]

\[11\rangle = (1000\rangle - 1111\rangle)(1000\rangle - 1111\rangle)(1000\rangle - 1111\rangle) \]

distance 3 \(\Rightarrow \) corrects any one-qubit error

Say the Hamiltonian is

\[H = H_1 + H_2 + \ldots + H_q \]

\[= \frac{1}{\sqrt{q}} \left(\frac{1}{2} H_1 \otimes 1_{q-1} + \frac{1}{2} 1_{1} \otimes H_2 \otimes 1_{q-2} + \ldots + 1_{1,\ldots,1} \otimes H_q \right) \]

\[U(t) = \exp(-iHt) \]

\[= \prod_{j=1}^{q} \left(e^{-iH_1 t} \otimes 1_{q-1} \right) \]

\[= e^{-iH_1 t} \otimes e^{-iH_2 t} \otimes \cdots \otimes e^{-iH_q t} \]

\[= (1 - iH_1 t) \otimes (1 - iH_2 t) \otimes \cdots \otimes (1 - iH_q t) + O((t^2)) \]

\[= 1 - iH_1 t + O((t^3)) \]

\(\Rightarrow \) (ideal) error correction fixes all the first-order errors.

In fact, if we measure the syndrome during EC, then the first error is at fourth-order probability (squared amplitude)

"Quantum Zeno effect"

Unitary/coherent EC would not help against the 2-local Hamiltonian \(H = Z_3 \otimes Z_4 \) (although the Zeno effect would still suppress it, with measurements)