
- necessary to start the computation

- key subroutine in Steane-style \((\frac{1}{2} \times + \frac{1}{2} \times) \) and Knill-style \((\frac{1}{2} \times) \) error correction

- often dominant in overhead of a scheme

- for a random/typical \(n \)-qubit CSS code, transversal gates &-meas cost \(n \); preparing state costs \(\frac{n^2}{4} \) \((\frac{1}{2} \times \text{stabilizers}, \text{each of act. } \approx \frac{n}{2}) \).

\[\text{1st Example: } \Sigma - E + (E +) = (E +) \]

Method 1: Shor-style prep.

- apply EC to an arbitrary (eg. random) state
 - circular, except for Shor-style EC
 - moves into the codespace, but w/ unknown codeword

- ok if think of \(107 \) as an \[\text{[n,0,dI]} \] QECC

- extract syndrome of each of the \(\frac{n - 1}{2} \) \(\times \) and \(\frac{n + 1}{2} \) \(\times \) stabilizers

- works for non-CSS too, using appropriate ort states

- disadvantage: works poorly for large \(n \)

Method 2: Steane-style prep. (for CSS codes)

- prepare & verify \[\text{Steane } 020\overline{2}036 \]

Preparation

- Gaussian-eliminate \(X \) (or \(Z \)) stabilizers into the form \((I \ A) \)

\[\text{eg. } \begin{pmatrix} 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \end{pmatrix} \]

\[\text{prepare } 1 \oplus \text{num } X \text{stabs} \quad \text{on that} \]

\[\text{apply CNOTs from controls to targets to create } X \text{stabs. } \]

\[\text{eg. } \]

\[\text{state necessarily has correct } Z \text{stabs } \implies \text{all } 107 \]

Optimized preparation

- don't prepare qubit until needed

- parallelize gates into as few rounds as possible
Lemma: Consider a matrix a subset of whose positions have been marked \(\ast \).

Let \(n = \max \) # of \(\ast \)s in any row or col.

\(\Rightarrow \) \(\ast \)e\(d \) positions can be colored w/ 51, 3, \(\ldots \), \(n \), \(\ast \)s st. no number appears twice in any row or column.

Remark: A completely naive greedy algorithm can easily get in trouble

\[\begin{array}{c}
0 & 1 & 0 & 0 & 0 \\
1 & 2 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1
\end{array} \]

Proof: Induction in \(n \). \(n = 0 \) trivial.

Suffices to place \(n \)'s \(1 \)s in remaining positions, \(\leq n-1 \) \(\ast \)s in any row or col.

"Worst case" (????) is every row \& col has exactly \(n \) \(\ast \)s.

Then consider the bipartite graph (the adjacency matrix is the \(\ast \)s)

\[\begin{array}{c}
\text{rows} \\
\vdots \\
\text{cols}
\end{array} \]

\[\text{edge if they overlap} \]

This is a regular graph with degree \(n \) on both sides.

\(\therefore \) \(\exists \) a perfect matching, ie. a coloring that colors everybody by one \(\ast \).

(Proof Hall's Matching Thm: For a set \(S \) of rows, the \# of incident edges is \(n \cdot |S| \). This is \(\leq n \cdot |N(S)| \), the \# of incident edges to \(N(S) \).

Thus \(|S| \leq |N(S)| \) \(\ast \)s, so matching thm. applies.)

This is true b/c we can always embed the bipartite graph in a larger one in which every vertex has degree \(n \), and the restriction of a matching on the larger graph in particular cases every vertex of the smaller graph.

Here’s how:

\[\begin{array}{c}
\text{row1} \\
\vdots \\
\text{rown}
\end{array} \]

\[\begin{array}{c}
\text{col1} \\
\vdots \\
\text{coln}
\end{array} \]

Repeat over \(\ast \) over again, up to \(n-1 \) times, etc.

This can be suboptimal:

- (eg. 10000+11111)

- using teleportation, multiple CNOTs can be applied in one round

(example)

Open: Come up w/ a faster encoding method for general CSS states
1. Verifying ancillas

- Precede same stabilizer at a time (error detection or correction)
- All at once (error detection)

For a $d=3$ perfect CSS code:

```
Error orders:
0 1 2 3 0 1

Ancilla:
0 1 1 1 0 1/
0 1 2 2 0 1
0 1 2 3 0 1/
```

For a $d=7$ perfect CSS code:

```
Error orders:
0 1 2 3 4 0 1 2 3
0 1 1 1 0 1 1 1
0 1 2 2 2 0 1 2 2
0 1 2 3 3 0 1 2 3
```

```
FT against $X \otimes Z$ errors
```

(can apply a random cut to reduce $X/2$ asymmetry)

-can be optimized: use different prep cuts to create different correlated errors that can't cancel out

-do not use full error rejection

2. Start by encoding into an error-detecting code

```
XXX
1 2 3 4 5 6
```

-then apply Steane's prep cut

- finally, or occasionally, check for errors

- decode

3. Use the "slow means" decoding trick from last time to avoid any/some verification

- reduces overhead, also threshold

(massive ancilla verification probably gives best thresholds)