THE SURFACE CODE

Ben Reichardt

Intuition: (scale-invariant superpositions of) String nets

1. Start with a surface (2-manifold with boundary)

2. Draw a net on it (cycles or degree 4)
2. Codeword = uniform superposition overall such pictures

Discretization

- pbit for every lattice edge
- $|1\rangle = \text{net edge}$
- $|0\rangle = \text{none}$

This gives a quantum code!

A. Codewords
B. Protects against
C. Stabilizers
This gives a quantum code:

A. Codewords

B. Protects against errors

C. Stabilizers

\[|\text{encoded}\rangle_{000} = \begin{array}{c} \begin{array}{c} \text{circles} \\ \text{hatched} \end{array} \end{array} + \begin{array}{c} \begin{array}{c} \text{circles} \\ \text{red} \end{array} \end{array} + \ldots \]

\[|\text{encoded}\rangle_{100} = \begin{array}{c} \begin{array}{c} \text{circles} \\ \text{red} \end{array} \end{array} + \begin{array}{c} \begin{array}{c} \text{circles} \\ \text{hatched} \end{array} \end{array} + \ldots \]

\[|\text{encoded}\rangle_{110} = \begin{array}{c} \begin{array}{c} \text{circles} \\ \text{red} \end{array} + \begin{array}{c} \begin{array}{c} \text{circles} \\ \text{hatched} \end{array} + \ldots \]

Protects against errors:

Any region just looks like

\[\therefore \text{you can't tell if there are an even (10\rangle) or odd (11\rangle) number of loops around a hole} \]

Logical operators

logical X on first encoded qubit

(meaning $X \otimes I$ elsewhere)

switches first qubit

$10 \leftrightarrow 11$
distance (minimum weight of an operator acting nontrivially on the codespace) = \min \{ \text{circumference of a hole}, \text{distance between holes, or from hole to boundary} \} \\

Stabilizers (parity checks satisfied by codewords)

Rule 1: Even net degree at every vertex

Rule 2: All cycles have equal amplitude

To force \(\alpha = \beta \), use the stabilizer \\
\[
\begin{array}{c|c}
X \\text{this either creates} \\
\hline
\end{array}
\]

a cycle with the same
A big cycle is created by multiplying the stabilizers for the tiles it encloses.

Observe: The stabilizers are local!
(codespace = ground space of local Hamiltonian)
--- Important for physical implementation

- code qubits
- qubits used to measure
- vertex stabilizers
- tile stabilizers

(Observe: Mathematically, the logical operators commute with the stabilizers; this is why they leave the code unchanged.)
Observer: Mathematically, the logical operators commute with the stabilizers; this is why they leave the code unchanged.
\[P \otimes X \rangle = X (P \otimes X \rangle) = X 1 \rangle \]

Codespace = ground-space of Hamiltonian
\[\mathcal{H} = - \sum_{\text{vertices}} \sum_{\text{tiles}} \]
- all terms commute
- 4-local, and geometrically local in 2D

How to use this code?
1. How to correct errors
2. How to correct errors fault tolerantly?
3. How to compute on the encoded data fault tolerantly?

Errors and error correction

X error

2 X errors

X errors create strings — undetectable in the interior, but detectable at the endpoints

Z errors can’t be drawn as nets, but are completely symmetrical: chains of Z errors (on the dual lattice) show up at their endpoints
Error correction uses minimum-weight matching. For every vertex, consider its parity (should be even) many explanations:

- Observed odd-parity vertices
- Weight-13 error
- Best explanation (not unique):
 - Weight-5 error

Can correct X and Z errors separately. (I am ignoring some subtleties)

Fault-tolerant error correction

How do we explain?

- Observed odd-parity vertices

⇒ There must have been an error measuring the parity of a vertex

Solution: Repeat "syndrome extraction," and run matching algorithm also in time!

Error chains can grow in space and time, with syndrome flips observed at the endpoints.

Fault-tolerant computation
Most interesting gate: CNOT (entangling)

\[\begin{array}{c}
\text{a} \\
\text{b}
\end{array} \quad \begin{array}{c}
\text{a} \\
\text{a} \oplus \text{b}
\end{array} \]

Method 1: Transversal gates

Observe: Sum mod 2 of two valid net diagrams is another valid diagram.

\[\begin{array}{c}
\text{T} \\
\oplus
\end{array} \quad \begin{array}{c}
\text{T}
\end{array} = \begin{array}{c}
\text{T}
\end{array} \]

Corollary: Transversal CNOTs implement encoded CNOT.

(a loop around the top hole will be copied around the bottom hole)

Method 2: Code deformation

Idea:

Code \[\rightsquigarrow\] slightly different code (different surface) \[\rightsquigarrow\] Original code — but with manipulated codespace

2013-2014 USC notes Page 8
Smooth and rough boundary conditions

- rough boundary
 = dual of smooth bdry
 - allows net lines to terminate
First bit (0 or 1) is XORed into 2nd bit

CNOT gate

Typical braiding for CNOT gate, in time

2D Architecture for a quantum computer

- Smooth qubit being expanded to braid around rough qubit
- Lower-distance qubits involved in 1st level of distillation (with higher logical error rate)
Elaborations:

- Surface code on other lattices
- Complexity of min-wt matching: $O(n^2)$ by Edmond
- (non-fault tolerant) Syndrome extraction
- Codewords 107 and 117 in the computational basis
- Obtaining a universal gate set