Quantum algorithms for formula evaluation

Ben Reichardt
Caltech

joint work with
Andrew Childs, Robert Špalek, Shengyu Zhang

Kiyomizudera
Problem: Evaluate the formula with minimal queries to the input bits x_i.

$$\varphi(x)$$
Def: \{AND, OR, NOT\} Formula = Tree of nested gates
Def: \{AND, OR, NOT\} Formula = Tree of nested gates

\[\varphi(x) \]
Def: \{AND, OR, NOT\} Formula = Tree of nested gates

(in a circuit, cycles are allowed; but in a formula, subexpressions cannot be reused)
Problem: Evaluate the formula with minimal queries to the input bits x_i.

Results (1):

- $O(\sqrt{N})$-query quantum algorithm ($N = \#\text{leaves}$) for evaluating “approximately balanced” {AND, OR, NOT} formulas (optimal!)
- $N^{\frac{1}{2}+o(1)}$-time quantum algorithm for general {AND, OR, NOT} formulas (after efficient preprocessing independent of x)
• Problem: Evaluate the formula, with minimal queries to the inputs bits x_i.

• Results:
 • $O(\sqrt{N})$-query quantum algorithm for “approximately balanced” AND-OR formulas
 • $N^{1/2+o(1)}$-time quantum algorithm for general AND-OR formulas (after preprocessing)

Problem Motivations:

• Playing “Go”
 • Nodes \leftrightarrow game histories
 • White wins if \exists move s.t. \forall black moves, \exists move s.t. …

 ➞ Two-player game trees are formula trees with alternating levels of AND, OR gates

• Decision version of min-max tree evaluation
 • inputs are real numbers
 • want to decide if minimax is ≥ 10 or not

• Well-studied classical problem…
Problem history (1/2)

- Problem: Evaluate the formula, with minimal queries to the inputs bits x_i.
- Results:
 - $O(\sqrt{N})$-query quantum algorithm for “approximately balanced” AND-OR formulas
 - $N^{\frac{1}{2} + o(1)}$-time quantum algorithm for general AND-OR formulas (after preprocessing)
- Classical history
 - Deterministic algorithm requires time N
 - Randomized (Las Vegas) algorithm in E-time $O(N^{0.754})$ for balanced binary AND-OR formulas [Snir ‘85, Saks & Wigderson ‘86]
 - Flip coins to decide which subtree to evaluate next, short-circuit
 - Optimal [Santha ‘95]
 - For arbitrary AND-OR formulas $\Omega(N)$ time may be required
Problem history (2/2)

• Classical history
 • Randomized algorithm in E-time $\Theta(N^{0.754})$ for balanced binary AND-OR formulas
 • Evaluating an arbitrary AND-OR formula may require $\Omega(N)$ time

• Quantum history
 • Adversary lower bound $\Omega(\sqrt{N})$ queries [Barnum, Saks ‘04]
 • Grover search: Evaluates $\text{OR}(x_1, x_2, \ldots, x_N) = \begin{cases} 1 & \text{if } \exists \text{ an } i : x_i = 1 \\ 0 & \text{otherwise} \end{cases}$
 using $O(\sqrt{N})$ queries ($O(\sqrt{N \log \log N})$-time)
 • Can be applied recursively to evaluate shallow trees:
 • Evaluates regular depth-d AND-OR formula in $\sqrt{N} \ O(\log N)^{d-1}$
 queries [BCW ‘98]
 • Search on faulty oracles [Høyer, Mosca, de Wolf ‘03] $\Rightarrow O(\sqrt{N} c^d)$ queries
Breakthrough!

- Classical history
 - Randomized algorithm in E-time $\Theta(N^{0.754})$ for balanced binary AND-OR formulas
 - Evaluating an arbitrary AND-OR formula may require $\Omega(N)$ time

- Quantum history
 - Adversary lower bound $\Omega(\sqrt{N})$ queries [Barnum, Saks ‘04]
 - Grover search: Evaluates $\text{OR}(x_1, x_2, \ldots, x_N)$

 \[
 \begin{cases}
 1 & \text{if } \exists \text{ an } i : x_i = 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 using $O(\sqrt{N})$ queries ($O(\sqrt{N \log \log N})$-time)
 - Can be applied recursively to evaluate shallow trees

- Farhi, Goldstone, Gutmann 2007: Breakthrough continuous-time quantum algorithm for evaluating balanced binary NAND formula in $N^{\frac{1}{2}+o(1)}$ queries & time
Farhi, Goldstone, Gutmann ‘07 algorithm

- **Theorem** ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be evaluated in time $N^{1/2+o(1)}$.
- Convert formula to a tree:
Theorem ([FGG '07, CCJY '07]): A balanced binary NAND formula can be evaluated in time $N^{1/2 + o(1)}$.

- Convert formula to a tree:
Farhi, Goldstone, Gutmann ‘07 algorithm

- **Theorem** ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be evaluated in time $N^{1/2+o(1)}$.
- Convert formula to a tree:
- Attach an infinite line to the root
Farhi, Goldstone, Gutmann ‘07 algorithm

- **Theorem** ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be evaluated in time $N^{1/2+o(1)}$.
- Convert formula to a tree:
 - Attach an infinite line to the root
 - Add edges above leaf nodes evaluating to one…

![Diagram of a tree structure representing a balanced binary NAND formula, with nodes labeled as 0 or 1.](image)

- $\bigcirc = 0$
- $\bullet = 1$
Farhi, Goldstone, Gutmann ‘07 algorithm

- **Theorem** ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be evaluated in time $N^{1/2+o(1)}$.

- Convert formula to a tree:
 - Attach an infinite line to the root
 - Add edges above leaf nodes evaluating to one…

=0
=1
Farhi, Goldstone, Gutmann ‘07 algorithm

- **Theorem** ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be evaluated in time $N^{\frac{1}{2}+o(1)}$.

- Convert formula to a tree:
 - Attach an infinite line to the root
 - Add edges above leaf nodes evaluating to one
 - Initialize wave packet on left ray…
Continuous-time quantum walk [FGG '07]

\[x_{11} = 1 \]

\[x_{11} = 0 \]
FGG quantum walk $|\psi_t\rangle = e^{iAGt}|\psi_0\rangle$
FGG quantum walk $|\psi_t\rangle = e^{iAGt}|\psi_0\rangle$
FFG quantum walk $|\psi_t\rangle = e^{iAGt}|\psi_0\rangle$

$\varphi(x) = 0$
Wave reflects!

$\varphi(x) = 1$
Wave transmits!
[**FGG ’07**] algorithm

- **Theorem** ([**FGG ’07, CCJY ’07**]): A balanced binary NAND formula can be evaluated in time $N^{\frac{1}{2}+o(1)}$.

[**CRŠZ ’07**] algorithm

- **Theorem** ([**CRŠZ ’07**]):
 - An “approximately balanced” \{AND, OR, NOT\} formula can be evaluated with $O(\sqrt{N})$ queries (optimal!).
 - A general \{AND, OR, NOT\} formula can be evaluated with $N^{\frac{1}{2}+o(1)}$ queries.

Running time is $N^{\frac{1}{2}+o(1)}$ in each case, after efficient preprocessing.
Talk outline

1. The Algorithm
 - Convert formula φ into a graph $G(\varphi)$
 - Define classical random walk on $G(\varphi)$
 - Quantize that walk
 - $\{p_1, p_2, \ldots, p_6\}$
 - $\sqrt{p_1}|\cdot\rangle + \sqrt{p_2}|\cdot\rangle$
 - $+ \sqrt{p_3}|\cdot\rangle + \sqrt{p_4}|\cdot\rangle$
 - $+ \sqrt{p_5}|\cdot\rangle + \sqrt{p_6}|\cdot\rangle$
 - If $x=0$, STOP!

2. Why It Works
 - Szegedy correspondence
 - Zero energy eigenstate analysis

3. Extensions
Talk outline

1. The Algorithm
 - Convert formula φ into a graph $G(\varphi)$
 - Define classical random walk on $G(\varphi)$
 - If $x_i = 0$, STOP!

2. Why It Works
 - Szegedy correspondence
 - Zero energy eigenstate analysis

3. Extensions
 - Quantize that walk
 - $\{p_1, p_2, \ldots, p_6\}$
Talk outline

1. The Algorithm

2. Why It Works

More Gates!

Szegedy correspondence
Zero energy eigenstate analysis

Fushimi-Inari

Chion-In

Katsura Imperial Villa

Convert formula ϕ into a graph $G(\phi)$

Define classical random walk on $G(\phi)$

Quantize that walk

$\{p_1, p_2, \ldots, p_6\}$

If $x_i = 0$, STOP!
Formula evaluation algorithm

Convert formula φ into a graph $G(\varphi)$

Define classical random walk on $G(\varphi)$

Quantize that walk
Convert formula φ into a graph $G(\varphi)$

Define classical random walk on $G(\varphi)$

Quantize that walk

Substitution rules:

- AND
- OR
- NOT

$\varphi(x)$
Substitution rules:

- **AND**
- **OR**
- **NOT**

Convert formula φ into a graph $G(\varphi)$

Define classical random walk on $G(\varphi)$

Quantize that walk
Convert formula φ into a graph $G(\varphi)$

Substitution rules:

- AND
- OR
- NOT

Define classical random walk on $G(\varphi)$

Quantize that walk
• Convert formula φ into a graph $G(\varphi)$

• Define classical random walk on $G(\varphi)$

• Quantize that walk

• $P(\text{stepping to subtree}) \propto \sqrt{\text{size of that subtree}}/\sqrt{s_p}$

• (For a balanced tree, walk is uniform)
- $P(\text{stepping to subtree}) \propto \sqrt{\text{size of that subtree}}/\sqrt{s_p}$
- (For a balanced tree, walk is uniform)
- Make leaves (inputs) evaluating to 0 probability sinks
- \(P(\text{stepping to subtree}) \propto \sqrt{\text{size of that subtree}}/\sqrt{s_p} \)
- (For a balanced tree, walk is uniform)
- Make leaves (inputs) evaluating to 0 probability sinks
Convert formula φ into a graph $G(\varphi)$

Define classical random walk on $G(\varphi)$

Quantize that walk

- $P(\text{stepping to subtree}) \propto \sqrt{\text{(size of that subtree)}}/\sqrt{s_p}$
- (For a balanced tree, walk is uniform)
- Make leaves (inputs) evaluating to 0 probability sinks

If $x_9=0$, STOP!
If $x_i = 0$, STOP!

- Classically, roll a dice to determine next step
- Quantumly, the dice is part of the quantum state. Instead of randomizing the dice between steps, apply a unitary operator to it.

Transition probabilities

\[\{p_1, p_2, \ldots, p_6\} \]

\[\sqrt{p_1} | \cdot \rangle + \sqrt{p_2} | \cdot \cdot \rangle + \sqrt{p_3} | \cdot \cdot \cdot \rangle + \sqrt{p_4} | \cdot \cdot \cdot \cdot \rangle + \sqrt{p_5} | \cdot \cdot \cdot \cdot \cdot \rangle + \sqrt{p_6} | \cdot \cdot \cdot \cdot \cdot \cdot \rangle \]
Classically, roll a dice to determine next step

Quantumly, the dice is part of the quantum state. Instead of randomizing the dice between steps, apply a unitary operator to it.

- Probability sinks in the classical r.w. (inputs $x_i=0$) become phase flips in the qu. walk \Rightarrow standard phase flip oracle

Transition probabilities $\{p_1, p_2, \ldots, p_6\}$

$U = \text{reflection about the state}
\begin{align*}
\sqrt{p_1} | \cdot \rangle + \sqrt{p_2} | \cdot \cdot \rangle \\
+ \sqrt{p_3} | \cdot \cdot \rangle + \sqrt{p_4} | \cdot \cdot \cdot \rangle \\
+ \sqrt{p_5} | \cdot \cdot \cdot \rangle + \sqrt{p_6} | \cdot \cdot \cdot \cdot \rangle
\end{align*}$
The Algorithm:

- Start at the root
- Apply phase estimation to the quantum walk with precision $1/\sqrt{N}$ (i.e., run the walk for time \sqrt{N})
 - If phase is 0 or π, output “$\varphi(x)=1$”
 - Otherwise output “$\varphi(x)=0$”
Convert formula φ into a graph $G(\varphi)$

Define classical random walk on $G(\varphi)$

Quantize that walk

\[
\sqrt{p_1} + \sqrt{p_2} + \sqrt{p_3} + \sqrt{p_4} + \sqrt{p_5} + \sqrt{p_6}
\]

$P(\text{stepping to subtree}) \propto \sqrt{\text{size of that subtree}}/\sqrt{s_p}$

If $x_i = 0$, STOP!
2. Why It Works
The Algorithm:

- Start at the root
- Apply phase estimation to the quantum walk with precision $1/\sqrt{N}$ (i.e., run the walk for time \sqrt{N})
 - If phase is 0 or π, output $\varphi(x)=1$
 - Otherwise output $\varphi(x)=0$

- Outputs $\varphi(x)=1$ “iff” there is an eigenstate of the walk operator U that overlaps the root and has corresponding $|\text{eigenvalue}| < 1/\sqrt{N}$

\therefore We need to carry out spectral analysis of the quantum walk U
Spectral analysis I: Szegedy correspondence

- Correspondence between spectrum and eigenvalues of quantum walk and those of a symmetric matrix
 (If P is symmetric, then P and U(P) have corresponding eigensystems)
- Halves the dimensions
- Real instead of complex operators

Classical random walk with transition matrix P

Quantize

Quantum walk U(P)

Symmetric matrix

[Szegedy ’04]
Spectral analysis I: Szegedy correspondence

Quantum coined walk \(U \) on:

\[
\sqrt{P \circ P^T} = \text{Weighted Adj. matrix of:}
\]

\[
\sqrt{P \circ P^T}
\]

\(= \) Weighted Adj. matrix of:

\[
\sqrt{P \circ P^T}
\]

\(\text{eigenvalues} \)

\(\& \text{eigenvectors} \)

\(\text{2|E| dimensions} \)

\(\text{|V| dimensions} \)
The Algorithm:

- Start at the root
- Apply phase estimation to the quantum walk with precision $1/\sqrt{N}$ (i.e., run the walk for time \sqrt{N})
 - If phase is 0 or π, output “$\varphi(x) = 1$”
 - Otherwise output “$\varphi(x) = 0$”

- Outputs $\varphi(x) = 1$ “iff” there is an eigenstate of A_G that overlaps the root and has corresponding $|\text{eigenvalue}| < 1/\sqrt{N}$

$A_G = \sqrt{P \circ P^T}$

:\begin{itemize}
 \item We need to carry out spectral analysis of A_G
\end{itemize}

Main Theorem:

- Adjacency matrix A_G has eigenvalue $E=0$ eigenvector with $\Omega(1)$ support on r” when $\varphi(x) = 1$.
- A_G has no eigenvalues $E \in (-1/\sqrt{N}, 1/\sqrt{N})$ with support on r” when $\varphi(x) = 0$.
• **Theorem:** \(\varphi(x) = 1 \iff \exists \) an \(E=0 \) eigenstate of \(A_G \) supported on root \(r \).

Proof
• **Theorem:** $\varphi(x)=1 \iff \exists$ an $E=0$ eigenstate of A_G supported on root r.

Construct eigenstate $|\alpha\rangle = \sum_v \alpha_v |v\rangle$ by induction

Inductive Hypothesis:
- $\varphi(v)=0 \Rightarrow \alpha_v=0$
- $\varphi(v)=1 \Rightarrow \alpha_v$ can be $\neq 0$
• **Inductive Hypothesis:**
 - \(\varphi(v) = 0 \Rightarrow \alpha_v = 0 \)
 - \(\varphi(v) = 1 \Rightarrow \alpha_v \) can be \(\neq 0 \)

AND gate gadget constraints:

\[
\begin{align*}
\alpha_{v_1} + \alpha_r &= 0 \\
\alpha_{v_2} + \alpha_r &= 0 \\
\alpha_{v_3} + \alpha_r &= 0
\end{align*}
\]

- If any \(\varphi(v_i) = 0 \), \(\alpha_{v_i} = 0 \Rightarrow \alpha_r = 0 \)
- If all \(\varphi(v_i) = 1 \), can scale each \(|\alpha_{T_i}\rangle \) so \(\alpha_{v_1} = \alpha_{v_2} = \alpha_{v_3} \neq 0 \), then set \(\alpha_r = -\alpha_{v_i} \neq 0 \)

\(\checkmark \) **AND**
• **Inductive Hypothesis:**
 - \(\varphi(v) = 0 \Rightarrow \alpha_v = 0 \)
 - \(\varphi(v) = 1 \Rightarrow \alpha_v \text{ can be } \neq 0 \)

OR gate gadget constraint:

\[
\alpha_{v_1} + \alpha_{v_2} + \alpha_{v_3} + \alpha_r = 0
\]

• \(\alpha_r \text{ can be } \neq 0 \Leftrightarrow \text{ at least one } \alpha_{v_i} \neq 0 \Leftrightarrow \text{ at least one } \varphi(v_i) = 1 \)
• **Theorem:** \(\varphi(x) = 1 \iff \exists \text{ an } E=0 \text{ eigenstate of } A_G \text{ supported on root } r. \)

• **Main Theorem:**
 • Adjacency matrix \(A_G \) has eigenvalue \(E=0 \) eigenvector with \(\Omega(1) \) support on \(r'' \) when \(\varphi(x) = 1 \).
 • \(A_G \) has no eigenvalues \(E \in (-1/\sqrt{N}, 1/\sqrt{N}) \) with support on \(r'' \) when \(\varphi(x) = 0 \).

• Remains to show support \(\alpha_r \) is \textit{large} \(\Omega(1) \) when \(\varphi(r) = 0 \), and that there is a large spectral \textit{gap} \(1/\sqrt{N} \) away from \(E=0 \) when \(\varphi(r) = 1 \).

• Proofs by same induction but \textit{quantitative}.
Problem: Evaluate the formula with minimal queries to the input bits \(x_i \).

\[\varphi(x) \]

\[x_7 \quad x_8 \]

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad OR \quad x_9 \quad x_1 \quad x_5 \]

Results (1):

- \(O(\sqrt{N}) \)-query quantum algorithm (\(N = \) number of leaves) for evaluating "approximately balanced" \{AND, OR, NOT\} formulas (optimal!)

- \(N^{\frac{1}{2} + o(1)} \)-time quantum algorithm for general \{AND, OR, NOT\} formulas (after efficient preprocessing independent of \(x \))
3. Extensions
3. Extensions
More Gates!

joint work with Robert Špalek
Extension: Formulas on different gate sets

- Cost to evaluate a formula that uses other gates besides {AND, OR, NOT}?
- First step: Balanced iterative functions (the same function composed on itself)
 - [Farhi, Goldstone, Gutmann ’07]: Balanced recursive NAND gate formula

- Other balanced iterative functions?
What is the classical complexity of evaluating recursive MAJ_3 tree? [Boppana ‘86]

Answer: Unknown!

- Between $\Omega\left((7/3)^d\right)$ and $o\left((8/3)^d\right)$ for depth d [Jayram, Kumar & Sivakumar ‘03]
Recursive 3-bit majority tree

- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - Between $\Omega\left((7/3)^d\right)$ and $o\left((8/3)^d\right)$ [Jayram, Kumar & Sivakumar ‘03]

- Best quantum lower bound is $\Omega\left(\sqrt{C_0(f)C_1(f)}\right) = \Omega(2^d)$

- Quantum algorithm:
 - Expand majority into \{AND, OR\} gates:
 \[
 \text{MAJ}_3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2))
 \]
 - \{AND, OR\} formula size increases is 5^d
 - $O(\sqrt{5^d}) = O(2.24^d)$-query algorithm!
Recursive 3-bit majority tree

- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - Between $\Omega\left((7/3)^d\right)$ and $o\left((8/3)^d\right)$ [Jayram, Kumar & Sivakumar ‘03]

- Best quantum lower bound is $\Omega\left(\sqrt{C_0(f)C_1(f)}\right) = \Omega(2^d)$

- Quantum algorithm:
 - Expand majority into \{AND, OR\} gates:
 $$\text{MAJ3}(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2))$$
 - \{AND, OR\} formula size increases is 5^d
 - $O(\sqrt{5^d}) = O(2.24^d)$-query algorithm!
 - $< 7/3$ better than classical lower bound
Recursive 3-bit majority tree

- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - Between $\Omega\left((7/3)^d\right)$ and $o\left((8/3)^d\right)$ [Jayram, Kumar & Sivakumar ‘03]

- Best quantum lower bound is $\Omega\left(\sqrt{C_0(f)C_1(f)}\right) = \Omega(2^d)$

- Quantum algorithm:
 - Expand majority into \{AND, OR\} gates:
 \[
 \text{MAJ3}(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2))
 \]
 - \{AND, OR\} formula size increases is 5^d
 - $O(\sqrt{5^d}) = O(2.24^d)$-query algorithm
 - In fact, inputs are not arbitrary; worst-case inputs are promised not to occur
 - Improved analysis gives $O\left(\left(\sqrt[3]{3 + \sqrt{2}}\right)^d\right) = O(2.101 \ldots^d)$
Different gate sets: Gate gadgets

- Classical complexity between $\Omega\left((7/3)^d\right)$ and $O\left((2.655\ldots)^d\right)$
- Quantum lower bound: $\Omega(2^d)$
- Quantum upper bound: $\text{MAJ}3 = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2)) \Rightarrow O(\sqrt{5}^d) = O(2.236\ldots^d)$
 - improved analysis $\Rightarrow O(\sqrt{(3+\sqrt{2})^d}) = O(2.101\ldots^d)$

- **Gate gadgets:**

 - **Recall** Substitution rules:

 - **New MAJ3 substitution rule:**
• **Inductive Hypothesis:**
 - $\varphi(v)=0 \Rightarrow \alpha_v=0$
 - $\varphi(v)=1 \Rightarrow \alpha_v$ can be $\neq 0$

MAJ3 gate gadget constraints:

$-\alpha_r = \alpha_{v_1} + \alpha_{v_2} + \alpha_{v_3}$

$\alpha_{v_1} + \omega \alpha_{v_2} + \omega^2 \alpha_{v_3} = 0$

- At least two $\varphi(v_i)$ must be 1 to satisfy second constraint nontrivially.
 \[\sqrt{\text{MAJ}} \]
• **Inductive Hypothesis:**

 - $\varphi(v) = 0 \Rightarrow \alpha_v = 0$

 - $\varphi(v) = 1 \Rightarrow \alpha_v$ can be $\neq 0$

\[
\begin{align*}
|\alpha_{T_1}\rangle & \quad |\alpha_{T_2}\rangle & \quad |\alpha_{T_3}\rangle \\
v_1 & \quad v_2 & \quad v_3
\end{align*}
\]

MAJ3 gate gadget constraints:

\[
\begin{align*}
-\alpha_r &= \alpha_{v_1} + \alpha_{v_2} + \alpha_{v_3} \\
\alpha_{v_1} + \omega \alpha_{v_2} + \omega^2 \alpha_{v_3} &= 0
\end{align*}
\]

• At least two $\varphi(v_i)$ must be 1 to satisfy second constraint nontrivially.

\(\Rightarrow (\text{Near}) \text{ Optimal } O(2^d(1+o(1))) = O(N^{\log_2^3+o(1)})\)-query balanced recursive MAJ3 formula evaluation algorithm
More results...

⇒ (Near) Optimal $O(2^{d(1+o(1))}) = O(N^{\log_3 2+o(1)})$-query balanced recursive MAJ_3 formula evaluation algorithm, based on new substitution gadget

- Furthermore, either by
 - Analysis of AND-OR formula expansion on promised inputs,
 - Or by constructing new “gadget” substitution rules

⇒ Nearly optimal algorithms for iterative versions of all 3-bit functions, some 4-bit functions (38 of 208 inequivalent functions)

AKA “Span programs,” well-studied in classical complexity theory
Remarks on formula evaluation algorithms:

Classical vs. Quantum

- Classical complexity of evaluating balanced k-ary alternating AND-OR tree is $(k/2)^{\text{depth}} = N^{-(1-1/\log_2 k)}$ — approaches N as k increases

- Classical complexity of evaluating general AND-OR formulas is not known?

- Classical complexity of evaluating iterative MAJ$_3$ formula is unknown: between $\Omega\left(\left(\frac{7}{3}\right)^d\right)$ and $o\left(\left(\frac{8}{3}\right)^d\right)$
 - (the generalization of the optimal AND-OR algorithm is not optimal when applied to MAJ$_3$ trees)

- Quantumly, complexity is $N^{1/2}$ queries always, all the way up to $k=N$ (i.e., evaluating OR(x_1,\ldots,x_N), Grover search)

- General AND-OR formulas can be evaluated with $N^{1/2+o(1)}$ queries

- Quantumly, the AND-OR algorithm generalizes to give optimal algorithm for evaluating iterated f, where f is any 3-bit function
Further extensions: Mixing different gates

- Algorithm works for unbalanced formulas with mixtures of different gates — but is it optimal?
Further extensions: Mixing different gates

- Algorithm works for unbalanced formulas with mixtures of different gates — but is it optimal?
- Answer: Work in progress. Unclear, but in general, probably not.

Promising:
- “Layered” balanced formulas (at each depth, one gate type used) are okay
- \{AND, OR, +\} compose well on top; e.g., \(\text{AND}(c_1, \ldots, c_k) = \sqrt{c_1^2 + \ldots + c_k^2}\)
- “Adversary-balanced” formulas on gate set \(S\):
 - \(S' = \{\text{arbitrary two- or three-bit gates, EQUAL}_O(1)\}\) gates
 - \(S = \{\text{bounded-size \{AND, OR, NOT, PARITY\} formulas on inputs that are themselves possibly gates from } S'\}\)

Discouraging:
- With the exception of \{AND, OR, PARITY\}, we do not know how to evaluate optimally formulas with inputs that do not have balanced \(\text{ADV}^+ = \text{ADV}^\pm\) bounds
 - Simple examples (e.g., \(\text{MAJ}_3(x_1, x_2, x_3 \oplus x_4), \text{MAJ}_3(x_1, x_2, x_3 \triangle x_4)\)) suggest that gadget weights cannot be optimized to match lower bounds
 - \((x_1 \& (x_2 \lor x_3)) \lor (!x_1 \& (x_4 \lor (!x_2 \& !x_3)))\)
• Results:
 • $N^{1/2+o(1)}$-time quantum algorithm for general \{AND, OR, NOT\} formulas (after efficient preprocessing); $O(\sqrt{N})$-query quantum algorithm for “approximately balanced” \{AND, OR, NOT\} trees (optimal!)

 • Nearly optimal query qu. algs. for iterative versions of all 3-bit functions (e.g., MAJ$_3$), and for 38 of 208 inequivalent 4-bit functions—extended to “adversary balanced” S-formulas

Open problems

• More optimal formula types:
 • Extension to allow other gates
 • Mix different gates in the same formula. Inductive hypotheses are compatible, so algorithm works — but it may or may not be optimal.

 • Better lower bounds: Want to understand qu. lower bounds ADV^+ versus ADV^\pm [Høyer, Lee, Špalek ‘07], esp. gate composition

• Can a witness set be extracted from the eigenstate?

• Classical connections:
 • More significant connections to classical “span programs”
 • Significance of classical random walk?

 • Open Classical ?: Is [BCE‘91] formula rebalancing optimal?
 • Does there exist formula φ, k such that every equivalent φ' of depth at most $k \log N$ has size(φ') $\geq N^{1+1/\log k}$?