Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Ben W. Reichardt
UC Berkeley

NSF, ARO
[quant-ph/0411036]
Q: Do \(\{ \text{stabilizer operations, prepare } \rho \} \) form a universal set?

Motivation: [Knill ‘04] Estimated threshold of 5-10%.
Def: Stabilizer operations = CNOT, Hadamard, Phase gates, + Prepare, measure $|0\rangle / |1\rangle$.

Gottesman-Knill Theorem: Stabilizer operations are efficiently classically simulable.
Q: Do \(\{\text{stabilizer operations, prepare } \rho\}\) form a universal set?

\[(x, y, z) \leftrightarrow \frac{1}{2}(I + xX + yY + zZ)\]
Q: Do \(\left\{ \text{stabilizer operations,} \atop \text{prepare } \rho \right\} \) form a universal set?

Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable.
Q: Do \{\text{stabilizer operations, prepare } \rho\} form a universal set?
Q: Do \[\left\{ \begin{array}{l} \text{stabilizer operations,} \\ \text{prepare } \rho \end{array} \right\} \] form a universal set?

Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable.
Q: Do \(\{ \text{stabilizer operations, prepare } \rho \} \) form a universal set?

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for \(|H\rangle \) w/ <14.2% error
Q: Do \{\text{stabilizer operations, prepare } \rho\} form a universal set?

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for \ket{H} w/ <14.2\% error
Q: Do \(\left\{\text{stabilizer operations, prepare } \rho\right\}\) form a universal set?

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for \(|H\rangle\) w/ <14.2% error

[Bravyi-Kitaev ‘04] Yes for \(|T\rangle\) w/ <17.3% error
Q: Do \{ stabilizer operations, prepare ρ \} form a universal set?

[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error

[Bravyi-Kitaev '04] Yes for $|T\rangle$ w/ <17.3% error

$\frac{1}{\sqrt{2}}(1 - \sqrt{2})$
Q: Do \{ \text{stabilizer operations, prepare } \rho \} \text{ form a universal set?}

[Bravyi-Kitaev '04, Knill '04] Yes for \(|H\rangle \) w/ <14.2\% error

[Bravyi-Kitaev '04] Yes for \(|T\rangle \) w/ <17.3\% error

\[\frac{1}{2}(1 - \sqrt{\frac{3}{4}}) \]

Theorem: [R '04] Yes for \(|H\rangle \) w/ <14.6\% error

\[\frac{1}{2}(1 - \frac{1}{\sqrt{2}}) \]
Q: Do stabilizer operations, prepare ρ form a universal set?

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for $|H\rangle$ w/ <14.2% error

[Bravyi-Kitaev ‘04] Yes for $|T\rangle$ w/ <17.3% error

\[\frac{1}{2}(1 - \sqrt{3}) \]

Theorem: [R ‘04] Yes for $|H\rangle$ w/ <14.6% error

\[\frac{1}{2}(1 - \frac{1}{\sqrt{2}}) \]
Q: Do \{\text{stabilizer operations, prepare } \rho\} form a universal set?

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for \ket{H} w/ <14.2\% error
[Bravyi-Kitaev ‘04] Yes for \ket{T} w/ <17.3\% error

\[\frac{1}{2}(1 - \sqrt{\frac{3}{4}}) \]

Theorem: [R ‘04] Yes for \ket{H} w/ <14.6\% error

\[\frac{1}{2}(1 - \frac{1}{\sqrt{2}}) \]
Improved distillation procedure

1. With equal probabilities \(\frac{1}{2} \), apply \(H \) to \(\rho \).

Assume \(\rho \) lies along \(H \) axis:

\[
\rho = \frac{1}{2} \left(I + x (X + Z) \right)
= \frac{1}{2} \begin{pmatrix} 1 + x & 1 + x \\ 1 + x & 1 - x \end{pmatrix}
\]
Improved distillation procedure

1. Symmetrize ρ into
 $$\rho = \frac{1}{2} \left(I + x (X + Z) \right) = \frac{1}{2} \left(\frac{1+x}{1+x} \frac{1+x}{1-x} \right).$$

2. Take 7 copies of ρ. Decode according to the [[7,1,3]] Steane/Hamming quantum code, rejecting if errors detected.

3. Conditioned on acceptance, the output state ρ' is
 $$\rho' = \frac{1}{2} \left(I + \frac{x^3 (7+8x^4)}{1+14x^4} \right) (X + Z).$$
Proof of improved distillation procedure

\[
\rho = \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} \quad \rho' = \frac{\left(\langle 0_L | \rho^\otimes n | 0_L \rangle \langle 0_L | \rho^\otimes n | 1_L \rangle \langle 1_L | \rho^\otimes n | 0_L \rangle \langle 1_L | \rho^\otimes n | 1_L \rangle \right)}{\text{tr}}
\]

For a CSS code in which \(X_L = X^{-n} \), \(Z_L = Z^{-n} \),

\[
|0_L\rangle = \frac{1}{\sqrt{|C|}} \sum_{a \in C} |a\rangle \quad |1_L\rangle = X_L |0_L\rangle
\]

where \(C \) is the set of codewords for a classical code.

Thus \(\langle 0_L | \rho^\otimes n | 0_L \rangle \propto \sum_{a,b \in C} \langle a | \rho^\otimes n | b \rangle \).

E.g. \(\langle 0001111 | \rho^\otimes 7 | 0110011 \rangle = (\rho_{00})^1 (\rho_{01})^2 (\rho_{10})^2 (\rho_{11})^2 \).

Generally,

\[
\langle a | \rho^\otimes n | b \rangle = \begin{pmatrix} n-\frac{1}{2}(|a|+|b|+|a\oplus b|) & \frac{1}{2}(-|a|+|b|+|a\oplus b|) \\ \frac{1}{2}(|a|-|b|+|a\oplus b|) & \frac{1}{2}(|a|+|b|-|a\oplus b|) \end{pmatrix}
\]

\[
\rho = \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix}
\]
Universality via **Magic states distillation**

Theorem: [R, ‘04] Stabilizer operations + Prepare $|H\rangle$ w/ $\leq \frac{1}{2}(1 - \frac{1}{\sqrt{2}})$ error \Rightarrow Universality.

Appl. 1: Stabilizer op. fault-tolerance

\Rightarrow Universal fault-tolerance.

Fact: Stabilizer operations + Any other single-qubit unitary \Rightarrow Universality.

Corollary: Stabilizer operations + (ability to prepare repeatedly any pure state which is not a stabilizer state) gives universality.
Universality from single-qubit pure states

Theorem: Stabilizer operations + (ability to prepare any single-qubit pure state which is not a Pauli eigenstate) is universal.

Proof:
Universality from single-qubit pure states

Theorem: Stabilizer operations + (ability to prepare any single-qubit
pure state which is not a Pauli eigenstate) is universal.

Proof:
Universality from multi-qubit pure states

Theorem: Stabilizer operations + (ability to prepare any pure state which is not a stabilizer state) is universal.

Proof: 9 sequence of Clifford unitaries and postselected Pauli measurements which reduces $|\psi\rangle$ down to a single-qubit pure state which is not a Pauli eigenstate.

By induction, true for $n=1$.

\[|\psi\rangle = \alpha|0\rangle|\psi_0\rangle + \beta|1\rangle|\psi_1\rangle \]

with $\alpha, \beta \neq 0$, $|\psi_0\rangle$ and $|\psi_1\rangle$ stabilizer states (else apply induction).

By applying Clifford unitaries, w.l.o.g. $|\psi_0\rangle = |0^{n-1}\rangle$.

\[\cdots \cdots |\psi\rangle = \alpha|0\rangle|0^{n-1}\rangle + \beta|1\rangle|+^{n-1}\rangle \]

But $\alpha|0\rangle + \frac{\beta}{2^{(n-1)/2}}|1\rangle$, $\frac{\alpha}{2^{(n-1)/2}}|0\rangle + \beta|1\rangle$
can’t both be stabilizer states!
Application to fault-tolerant computing

[Knill, quant-ph/0404104]

Given scheme for fault-tolerantly applying stabilizer circuits, extend it to a universal fault-tolerant scheme.

Universal fault-tolerance \quad \overset{\sim}{\leftrightarrow} \quad \text{Stabilizer op. fault-tolerance}

E.g., Knill’s scheme has threshold of 5-10% for fault-tolerant stabilizer operations, and the same threshold for fault-tolerant universal operations.
Open questions

Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable. \(\Rightarrow \) Universality from \(|H\rangle\) w/ \(\frac{1}{2}(1 - \frac{1}{\sqrt{2}})\) error is tight.

Open: Is stabilizer operations + (ability to prepare repeatedly single-qubit mixed state \(\rho\)) universal for all \(\rho\) outside the octahedron?
Open questions

Open: Is stabilizer operations + (ability to prepare repeatedly single-qubit mixed state ρ) universal for all ρ outside the octahedron?

Open: What about perturbations to the states ρ? What about asymmetries? What if we only have fidelity lower bound? Can we characterize stable fixed points for stabilizer codes?

Open: Can we give a provable reduction of fault-tolerance to problem of preparing stabilizer states with independent errors?
Stabilizer operation fault-tolerance Universal fault-tolerance

\[|00\rangle_L + |11\rangle_L \]

|0\rangle |0\rangle_L \quad + |1\rangle |1\rangle_L \quad |T\rangle_L

\[|T\rangle \]

Magic states distillation:

Stabilizer operations

\[\frac{1}{2}(1 - \frac{1}{\sqrt{2}}) \quad \frac{1}{2}(1 - \sqrt{\frac{3}{7}}) \]

+ Prepare \(|H\rangle\) or \(|T\rangle\) with <14.6\% or <17.3\% error resp.

\[\Rightarrow \text{Universality.} \]

\[\text{[Knill '04]} \quad \text{[Bravyi Kitaev '04]} \]

E.g., Knill’s scheme has same threshold for fault-tolerant stabilizer
Universality

Stabilizer operations (Clifford unitaries + prepare/measure Paulis) are not quantum universal.

Q: What additional operations are needed to get universality?

Fact: [Y. Shi, 2002] Stabilizer operations + any single-qubit unitary not in C is universal.

Theorem: Stabilizer operations + (ability to prepare repeatedly any pure state which is not a stabilizer state) gives universality.

Q: Is stabilizer operations + (ability to prepare single-qubit mixed state ρ) universal?