A classical leash for a quantum system

Ben Reichardt
University of Southern California

joint work with
Falk Unger and
Umesh Vazirani
What's going on in the box?
- How do we know if a claimed quantum computer really is quantum?
- How can we distinguish between a box that is running a classical simulation of quantum physics, and a truly quantum-mechanical system?
We can run experiments, but:

- In general, the box’s state is **quantum**-mechanical, but we are **classical**, and our measurements only reveal classical information.

- State of the box could live in an infinite-dimensional Hilbert space.

- We can’t repeat the same experiment twice (the box might have memory).

- The box might have been designed to trick us!
What's going on in the box?

Classical information
Why you can’t open the box:

1. Contractually not allowed 😄

2. Maybe you can — but you don’t understand it
D-Wave 1, 128-qubit "Rainier" processor owned by Lockheed Martin installed at USC's Information Sciences Institute (ISI), operational since Dec. 23, 2011. Time-shared 40/40/20 by USC/LM/others.

Processor environment
- 168 lines from room temperature to processor
- 10 kg of metal at 20 milliKelvin
- 1 nanoTesla in 3D across processor; 50,000x less than earth's magnetic field

Wiring and filtering
- "Motherboard" of the system re-entire package cooled to 20mK
- Specialized 30MHz filtering on all DC lines to avoid external noise
- IO system for 128 qubit chipset
Why you can’t open the box:

1. Contractually not allowed 😊

2. Maybe you can — but you don’t understand it
 • Too complicated
 • Foundational physics
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) the description of reality given by the wave function in quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to conclude that the description of reality as given by a wave function is not complete.

1.

Any serious consideration of a physical theory must take into account the distinction between the objective reality, which is independent of any theory, and the physical concepts with which the theory operates. These concepts are intended to correspond with the objective reality, and by means of these concepts we picture this reality to ourselves.

In attempting to judge the success of a physical theory, we may ask ourselves two questions: (1) "Is the theory correct?" and (2) "Is the description given by the theory complete?"

Whatever the meaning assigned to the term complete, the following requirement for a complete theory seems to be a necessary one: every element of the physical reality must have a counterpart in the physical theory. We shall call this the condition of completeness. The second question is thus easily answered, as soon as we are able to decide what are the elements of the physical reality.

The elements of the physical reality cannot be determined by a priori philosophical considerations, but must be found by an appeal to results of experiments and measurements. A
Why you can’t open the box:

1. Contractually not allowed 😊

2. Maybe you can — but you don’t understand it
 - Too complicated
 - Foundational physics

3. Useful for applications:
 - Cryptography — avoiding side-channel attacks
 - Complexity theory — De-quantizing proof systems
Clauser-Horne-Shimony-Holt game

Classical devices ⇒ Pr[win] ≤ 75%
Quantum devices can win with prob. up to ≈ 85%

Test for “quantum-ness”

Play game 10^6 times. If the boxes win $\geq 800,000$, say they’re quantum.
So they’re quantum—good.
But how do they work?
What are they doing?
Theorem: The optimal strategy is robustly unique.

If \(\Pr[\text{win}] \geq 85\%-\epsilon \)

\[\Rightarrow \text{State and measurements are } \sqrt{\epsilon}\text{-close to the optimal strategy (up to local isometries).} \]

\[\mathcal{H}_A \hookrightarrow \mathbb{C}^2 \otimes \mathcal{H}_{A'} \quad \mathcal{H}_B \hookrightarrow \mathbb{C}^2 \otimes \mathcal{H}_{B'} \]

\[|\psi\rangle_{AB} \leftrightarrow (|00\rangle + |11\rangle) \otimes |\psi'\rangle_{A'B'} \]
Theorem: \(\text{Pr[win]} \geq 85\%-\varepsilon \Rightarrow \sqrt{\varepsilon}\)-close to the ideal strategy.

Where is Alice’s qubit?

Follow the operators…

- Input: 0 or 1
- Output: 0 or 1

\[H_A \]

\Rightarrow \text{Two 2-outcome projective measurements}
Theorem: Pr[win] ≥ 85%-ε ⇒ √ε-close to the ideal strategy.

Most general strategy: Alice & Bob share arbitrary initial state in $\mathcal{H}_A \otimes \mathcal{H}_B$ and make two-outcome projective measurements.

Fact*: Two subspaces decompose space \mathcal{H}_A into 2D invariant spaces.

By aligning the subspaces, this decomposes \mathcal{H}_A as (qubit)\otimes(subspace label).

Analyze strategy on each 2D subspace separately*, comparing state & measurements to ideal strategy.
Theorem: \[\Pr[\text{win}] \geq 85\%-\varepsilon \Rightarrow \sqrt{\varepsilon}\text{-close to the ideal strategy.} \]

One-qubit case: Shared state is \[\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \]
Is there a classical analog to CHSH game rigidity?

Example: Two-player game with 85% optimal winning probability; and where winning with probability 85%-\(\epsilon\) means game transcript is distributed close to the optimal transcript distribution.

Not the same!
- The important point is not that optimal success probability determines the distribution of answers —that’s easy!
- Rather, there is only one way of generating the correct distribution of answers: by measuring single EPR states \(|00\rangle + |11\rangle\) in a certain way.

Open: What other multi-prover quantum games are rigid?
Fact 1: Any k-qubit quantum state is determined by its statistics for measurements of the 4^k Pauli operators $\{I, X, Y, Z\}^\otimes k$ (because they’re a basis for Hermitian matrices)

Fact 2: Operations on one half of an EPR state can equally well be applied to the other half

$$(M \otimes I)(|00\rangle + |11\rangle) = (I \otimes M^T)(|00\rangle + |11\rangle)$$

⇒ If Bob prepares a state by measuring his half, the same state* shows up on Alice’s side!

(Easy proof: It holds for $|0\rangle$ and $|1\rangle$, and any other measurement can be implemented by applying a unitary M, then measuring $|0\rangle, |1\rangle$)
How can we use the hammer?

Rough idea:
Play CHSH games with Alice and Bob for a while……
………………… At some random point, stop Bob—and ask him to prepare a certain state. Don’t stop Alice!

What happens:
Alice keeps playing CHSH games $O(\sqrt{\epsilon})$-close to honestly. But Bob might or might not prepare the right state.

Repeat to gather statistics on $\{I, X, Z\}^\otimes k$ to verify Bob follows directions

Problems:

1. No Y measurements!
 Solution: Workaround: Some states don’t need Y-basis measurements to be determined, e.g., $|0\rangle$

2. It’s only a one-qubit hammer!
 (and errors can accumulate doubly exponentially quickly)
Multi-game rigidity theorem
Sequential CHSH games
Ideal strategy:

\[
\text{state} = n \text{ EPR pairs } (|00\rangle + |11\rangle)^\otimes n \otimes |\psi'\rangle
\]
in game j, use j'th pair

General strategy:

arbitrary state \(|\psi\rangle \in \mathcal{H}_P \otimes \mathcal{H}_Q \otimes \mathcal{H}_E\)
in game j, measure with arbitrary projections

Main theorem:

For \(N=\text{poly}(n)\) games, if

\[
\Pr[\text{win} \geq (85\% - \epsilon) \text{ of games}] \geq 1 - \epsilon
\]

\[\Rightarrow \text{W.h.p. for a random set of } n \text{ sequential games,}\]

Provers’ actual strategy for those \(n\) games \(\approx\) Ideal strategy
1. Locate (overlapping) qubits

qubits for game 2

qubit for game 1

qubits for game 3
1. **Locate (overlapping) qubits**

 - Qubits for game 2
 - Qubit for game 1
 - Qubits for game 3

2. **Qubits are independent (in tensor product)**

 - Qubits for games 2
 - Qubit for game 1
 - Qubits for games 3

3. **Locations do not depend on history — Done!**

 - Qubits for...
 - Game 1
 - Game 2
 - Game 3
 - ...
Main idea: Leverage tensor-product structure between the boxes $\mathcal{H}_A \otimes \mathcal{H}_B$ to derive tensor-product structure within \mathcal{H}_A and \mathcal{H}_B.

1. **Locate (overlapping) qubits**

2. **Qubits are independent (in tensor product)**

3. **Locations do not depend on history — Done!**
Main idea: Leverage tensor-product structure between the boxes

Fact 1: Operations on the first half of an EPR state can just as well be applied to the second half

$$(M \otimes I)(|00\rangle + |11\rangle) = (I \otimes M^T)(|00\rangle + |11\rangle)$$

Fact 2: Quantum mechanics is local: An operation on the second half of a state can’t affect the first half *in expectation*

measuring this EPR state collapses it

pull these operators to the other side (with a hybrid argument, last to first, incurring $\mathcal{O}(n\sqrt{\epsilon})$ error)

⇒ game 1’s qubit stays collapsed

⇒ game n’s qubit can’t much overlap game 1
Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit
Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit
Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit.
Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit
Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit
Play games 2, ..., n. And finally, undo the transformation.

If extra qubit returns to $|0\rangle$, then this strategy \approx original strategy, up to the isometry “add a $|0\rangle$ qubit”
Ideal strategy:
\[
\text{state} = n \text{ EPR pairs } (|00\rangle + |11\rangle)^{\otimes n} \otimes |\psi'\rangle
\]
in game j, use j'th pair

General strategy:
\[
\text{arbitrary state } |\psi\rangle \in \mathcal{H}_P \otimes \mathcal{H}_Q \otimes \mathcal{H}_E
\]
in game j, measure with arbitrary projections

Main theorem:
For N=poly(n) games, if
\[
\Pr[\text{win} \geq (85\% - \epsilon) \text{ of games}] \geq 1 - \epsilon
\]
\[
\Rightarrow \text{W.h.p. for a random set of n sequential games,}
\]
\[
\text{Provers’ actual strategy for those n games} \approx \text{Ideal strategy}
\]
Applications

• Cryptography — avoiding side-channel attacks

• Complexity theory — De-quantizing proof systems
<table>
<thead>
<tr>
<th>Key-distribution schemes</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predistribution</td>
<td>- Secure channel in past</td>
</tr>
<tr>
<td>Public-key cryptography</td>
<td>- Authenticated channel</td>
</tr>
<tr>
<td>(e.g., Diffie-Hellman, RSA)</td>
<td>- Computational hardness</td>
</tr>
<tr>
<td>Quantum key distribution (QKD)</td>
<td>- Authenticated channel</td>
</tr>
<tr>
<td>(e.g., BB84)</td>
<td>- Quantum physics is correct</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Attacks

- Computational assumptions might be wrong
 - Quantum computers can factor quickly!

- “Side-channel attacks”:
 Mathematical models might be incorrect
 - Timing, EM radiation leaks, power consumption, …
 - QKD is especially vulnerable
Device-Independent QKD

• Full list of assumptions:

 1. Authenticated classical communication
 2. Random bits can be generated locally
 3. Isolated laboratories for Alice and Bob
 4. Quantum theory is correct

• Example
BB ‘84 QKD scheme

Polarization-entangled photons

\[
\frac{1}{\sqrt{2}} |\rightarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle
\]

C

measure in basis

\(\uparrow\) or \(\rightarrow\)

D

measure in basis

\(\uparrow\) or \(\rightarrow\)

exchange measurement bases: same basis \(\Rightarrow\) one key bit

* Not exactly
Attack on BB‘84 QKD

C

measure in basis

or

X

D

measure in basis

or

X

exchange measurement bases:
same basis ⇒ one key bit
Attack on BB‘84 QKD
with untrusted devices

Attack: Devices share random two-bit string.

- Button 1 ⇒ Output 1^{st} bit
- Button 2 ⇒ Output 2^{nd} bit

Also known by Eve!

⇒ No security if A & B each have 4-dimensional systems instead of qubits
Device-independent QKD assumptions

1. Authenticated classical communication
2. Random bits can be generated locally
3. Isolated laboratories for Alice and Bob
4. Quantum theory is correct

History

1. Proposed by Mayers & Yao [FOCS ‘98]
2. First security proof by Barrett, Hardy & Kent (2005), assuming Alice & Bob each have n devices, isolated separately

\[P_1, \ldots, P_n \quad Q_1, \ldots, Q_n \]

Our result: Device-independent QKD

- no subsystem structure assumed—two devices suffice
History II

1. Proposed by Mayers & Yao [FOCS ‘98]
2. First security proof by Barrett, Hardy & Kent (2005)
 - Many separately isolated devices \(P_1, \ldots, P_n \) \(Q_1, \ldots, Q_n \)
 - Quantum theory — Secure against non-signaling attacks!

[AMP ‘06, MRCWB ‘06, M ‘08, HRW ‘10]: More efficient, UC secure

[HRW ‘09]: Non-signaling security impossible with only two devices

3. Security proofs assuming quantum theory is correct, i.e., attacker is limited by quantum mechanics:

 [ABGMPS ‘07, PABGMS ‘09, M ‘09, HR ‘10, MPA ‘11]

 identical tensor-product attacks \(\rightarrow \) commuting measurement attacks

Our result: \hspace{1cm} **Device-independent QKD**

- no subsystem structure assumed—two devices suffice
- assume quantum attacker
- only inverse polynomial key rate & no noise tolerated (as in [BHK ‘05])
Application 2: “Quantum computation for muggles”
 a weak verifier can control powerful provers

Delegated classical computation
(for f on $\{0,1\}^n$ computable in time T, space s)

\[\text{IP} = \text{PSPACE} \Rightarrow \text{verifier poly}(n, s) \]
\[\text{MIP} = \text{NEXP} \Rightarrow \text{verifier poly}(n, \log T) \]

\[\text{IP} = \text{PSPACE} \Rightarrow \text{prover poly}(T, 2^s) \]

\[\text{MIP} = \text{NEXP} \Rightarrow \text{provers poly}(T) \]

Delegated quantum computation
…with a semi-quantum verifier, and one prover [Aharonov, Ben-Or, Eban ‘09, Broadbent, Fitzsimons, Kashefi ‘09]

Theorem 1: …with a classical verifier, and two provers

Application 3: De-quantizing quantum multi-prover interactive proof systems

Theorem 2: \(\text{QMIP} = \text{MIP}^* \)

(proposed by [BFK ‘10])
Computation by teleportation

Requirements:

1. Resource states, like
 \((I \otimes H)(|00\rangle + |11\rangle)\)

2. Two-qubit Bell measurements
Delegated quantum computation

Run one of four protocols, at random:

(a) CHSH games

(b) state tomography: ask Bob to prepare resource states on Alice's side by collapsing EPR pairs (Alice can't tell the difference)
(a) CHSH games
(b) state tomography:
 ask Bob to prepare resource states
 on Alice's side by collapsing EPR pairs
 (Alice can't tell the difference)
(c) process tomography:
 ask Alice to apply Bell measurements
 (Bob can't tell the difference)
Delegated quantum computation

Run one of four protocols, at random:

(a) CHSH games

(b) state tomography:
 ask Bob to prepare resource states on Alice's side by collapsing EPR pairs
 (Alice can't tell the difference)

(c) process tomography:
 ask Alice to apply Bell measurements
 (Bob can't tell the difference)

(d) computation by teleportation

Theorem: If the tests from the first three protocols pass with high probability, then the fourth protocol's output is correct.
Theorem 2: $\text{QMIP} = \text{MIP}^*$

Proof idea: Start with QMIP protocol:

- Quantum provers: R_1, R_2, \ldots, R_k
- Quantum verifier
- Quantum messages

Simulate it using an MIP* protocol with two new provers:

- Classical provers: P, Q
- Classical verifier
- Classical messages

Open: Can the round complexity be reduced?
Does encoding a *fault-tolerant* circuit protect against attacks/noise?
CHSH test: Observed statistics \Rightarrow system is quantum-mechanical

Multiple game rigidity theorem: Observed statistics \Rightarrow understand exactly what is going on in the system

Other applications?
Open question: What if there's only one device?

Verifying quantum dynamics is impossible, but can we still check the answers to BQP computations? (e.g., it is easy to verify a factorization)