Remarks on \mathbb{A}^1-homotopy groups of smooth toric models

Aravind Asok*
Department of Mathematics
University of Southern California
Los Angeles, CA 90089-2532
asok@usc.edu
October 28, 2009

Abstract

We extend previous results on \mathbb{A}^1-homotopy groups of (smooth proper) toric varieties to the case of smooth proper toric models in characteristic 0 (i.e., smooth proper equivariant compactifications of possibly non-split tori).

1 Statement of results

Fix a field k having characteristic 0, let $\mathcal{S}m_k$ denote the category of schemes that are separated, smooth and have finite type over k. Suppose X is a smooth proper k-scheme. Let $H(k)$ denote the \mathbb{A}^1-homotopy category of k-schemes as constructed in [MV99, §3.2]. Assume $X(k)$ is non-empty, and fix $x \in X(k)$. One can study the \mathbb{A}^1-homotopy (sheaves of) groups $\pi_1^{\mathbb{A}^1}(X,x)$ (denoted $a_1^{\mathbb{A}^1}(X,x)$ on [MV99, p. 110]). Our aim in this short note is to show that the “geometric” decomposition of \mathbb{A}^1-homotopy (sheaves of) groups of smooth proper “split” toric varieties (i.e., equivariant compactifications of $\mathbb{G}_m \times \mathbb{A}^n$) studied in [AD09] and [Wen07] extends to “non-split” toric varieties (i.e., equivariant compactifications of tori T over k). We will refer to equivariant compactifications of tori T over k as toric T-models [MP97, §5].

Let k^s denote a fixed separable closure of k and let G_k denote the Galois group of k^s over k. For a k-scheme Y, let Y^s denote the variety obtained by extending scalars to k^s. Suppose X is a smooth proper toric T-model. One knows that $Pic(X^s)$ is a finitely generated G_k-module, and we denote the associated dual k-torus—the Neron-Severi torus—by $T_{NS(X)}$. With any toric T-model, one can associate a fan Σ in $X^*(T^s)$ that is G_k-invariant. Cox’s construction [Cox95] realizing any “split” smooth proper toric variety as a geometric quotient of an open subscheme of affine space by a free action of $T_{NS(X)}$ can be generalized to the non-split case: if X is a smooth proper toric T-model, there are a $T_{NS(X)}$-torsor $f : U \to X$ and an open immersion $U \hookrightarrow \mathbb{A}^n_k$ ($n = \dim T + \dim T_{NS(X)}$) [MP97].

*Aravind Asok was partially supported by National Science Foundation Award DMS-0900813.
Proposition 2.1. Let \(\text{cofibrations} \) are simultaneously \(A \)-weak equivalences and monomorphisms of sheaves, i.e., \(A \)-acyclic cofibrations.

Theorem 1.1. Assume \(k \) is a field having characteristic 0 and \(T \) is a \(k \)-torus. Suppose \(X \) is a smooth proper toric \(T \)-model, and let \(x \) denote the \(k \)-rational point of \(X \) corresponding to \(1 \in T(k) \). The \(T_{NS(X)} \)-torsor \(f : U \to X \) above is an \(\mathbb{A}^1 \)-cover. In particular, if \(\tilde{x} \) is any lift of \(x \), there is a short exact sequence (of Nisnevich sheaves of groups)

\[
1 \longrightarrow \pi_1^\text{Nis}(U, \tilde{x}) \longrightarrow \pi_1^\text{Nis}(X, x) \longrightarrow T_{NS(X)} \longrightarrow 1,
\]

and, for each integer \(i > 1 \), there are isomorphisms \(\pi_i^\text{Nis}(U, \tilde{x}) \cong \pi_i^\text{Nis}(X, x) \). Finally, \(f \) induces a morphism of sheaves \(\pi_0^\text{Nis}(X) \to H^1_\text{ét}(T_{NS(X)}) \) that is an isomorphism on sections over finitely generated separable extensions \(L/k \).

Remark 1.2. There are examples of \(k \)-tori \(T \) and smooth proper toric \(T \)-models \(X \) for which \(\pi_0^\text{Nis}(X)(k) \) is non-trivial. Thus, over non separably closed fields, we have the interesting phenomenon that a smooth proper \(\mathbb{A}^1 \)-disconnected space can have \(\mathbb{A}^1 \)-connected covering spaces! For a manifestation of this phenomenon for non-proper smooth varieties, one can consider the morphism \(\mathbb{A}^m \setminus 0 \to \mathbb{A}^m \setminus 0/\mu_n \) \[\text{AD09}\] Remark 3.13.

2 Torus torsors as \(\mathbb{A}^1 \)-covering spaces

The word \(\text{space} \), will mean “object of \(\Delta \circ \text{Shv}_{Nis}(Sm_k) \)” (the category of simplicial Nisnevich sheaves on \(Sm_k \)); we use caligraphic letters (e.g., \(\mathcal{X}, \mathcal{Y} \)) to denote such objects. We set \([\mathcal{X}, \mathcal{Y}]_s := \text{hom}_{\mathcal{H}_s((Sm_k)_{Nis})} (\mathcal{X}, \mathcal{Y})\), where \(\mathcal{H}_s((Sm_k)_{Nis}) \) is as on \[\text{MV99}\] p. 49 and \([\mathcal{X}, \mathcal{Y}]_{\mathbb{A}^1} := \text{hom}_{\mathcal{H}(k)} (\mathcal{X}, \mathcal{Y})\). A morphism \(f : \mathcal{X} \to \mathcal{Y} \) of \(k \)-spaces is an \(\mathbb{A}^1 \)-cover (cf. \[\text{Mor06} \text{ Section 4.1}\]) if it has the unique right lifting property with respect to morphisms that are simultaneously \(\mathbb{A}^1 \)-weak equivalences and monomorphisms of sheaves, i.e., \(\mathbb{A}^1 \)-acyclic cofibrations.

Proposition 2.1. Let \(T \) be a multiplicative group over a field \(k \) having characteristic 0. If \(X \) is a smooth scheme, and \(\pi : U \to X \) is a \(T \)-torsor locally trivial in the étale topology, then \(\pi \) is an \(\mathbb{A}^1 \)-cover and, in particular, an \(\mathbb{A}^1 \)-fibration.

Let \(BT \) denote the simplicial classifying space of \(T \) viewed as a Nisnevich sheaf of groups, and let \(BT_\text{ét} \) denote the simplicial classifying space of \(T \) viewed as an étale sheaf of groups. Let \(\alpha : (Sm_k)_{\text{ét}} \to (Sm_k)_{Nis} \) be the morphism of sites induced by the identity functor. Set \(B_\text{ét} T := \text{R} \alpha_* BT_\text{ét} \); see \[\text{MV99} \text{§4.1}\] for more details.

Lemma 2.2 (cf. \[\text{AM09} \text{Lemma 4.2.4}\]). The space \(B_\text{ét} T \) is \(\mathbb{A}^1 \)-local.

Proof. By adjunction, one has canonical bijections

\[
\text{hom}_{\mathcal{H}_s((Sm_k)_{Nis})}(U, B_\text{ét} T) \cong \text{hom}_{\mathcal{H}_s(k)}(U, BT_\text{ét}).
\]

Choosing a fibrant model for \(BT_\text{ét} \), and using \[\text{MV99} \text{§2 Proposition 3.19 and §4 Proposition 1.16}\], to check that \(B_\text{ét} T \) is \(\mathbb{A}^1 \)-local, it suffices to prove that that the maps

\[
H^i_\text{ét}(U, T) \longrightarrow H^i_\text{ét}(U \times \mathbb{A}^1, T)
\]
are bijections for \(i = 0, 1 \). For \(i = 0 \), this a consequence of étale descent: if \(k'/k \) is a separable extension splitting \(T \), then it suffices to observe that any morphism \(U \times \mathbb{A}^1 \rightarrow \mathbb{G}_m^\times \) factors through a morphism \(U \rightarrow \mathbb{G}_m^\times \). For \(i = 1 \) one could apply [AM09] Lemma 4.3.7 and Proposition 4.4.3. For a direct proof, observe that [CTS87] Lemma 2.4, establishes the result for affine \(X \) (Grothendieck showed that étale and flat cohomology coincide \textit{Ibid.} p.159). We reduce the case of general \(X \) to the affine case by comparing the exact sequences of low degree terms for the Leray spectral sequences associated with an open affine cover \(u : U \rightarrow X \) and the corresponding cover \(u \times id : U \times \mathbb{A}^1 \rightarrow X \times \mathbb{A}^1 \).

\[\tag*{\Box} \]

Proof of Proposition \[2.1 \] After Lemma \[2.2 \], the proof is essentially [Mor06] Lemma 4.5(2)]; here are the details. Start with an \(\mathbb{A}^1 \)-acyclic cofibration \(j : A \rightarrow B \) fitting into a diagram

\[
\begin{array}{ccc}
A & \rightarrow & U \\
\downarrow j & & \downarrow \pi \\
B & \rightarrow & X.
\end{array}
\]

Now, since \(B_{\text{et}}T \) is \(\mathbb{A}^1 \)-local, the natural maps \([B, B_{\text{et}}T]_s \rightarrow [A, B_{\text{et}}T]_s\) and \([B, T]_s \rightarrow [A, T]_s\) are bijections. The pullback of \(\pi \) to \(A \) admits a section and is therefore a trivial torsor. By the first bijection just mentioned, it follows that the pullback of \(\pi \) to \(B \) is also trivial, and thus also admits a section, which we denote by \(s \). The composite morphism \(j \circ s \) need not be equal to \(s_0 \), but if it is not, then there is an element \(t_0 \in [A, T]_s \) such that \(t_0 \cdot s = s_0 \). By the second bijection mentioned at the beginning of this paragraph, the element \(t_0 \) determines a unique element \(t \) of \([B, T]_s\). The product \(t^{-1} \cdot s \) is a new section of \(\pi \) pulled back to \(B \). By construction this new section gives back \(s_0 \) upon restriction to \(A \) and thus provides the necessary (unique) lift.

\[\tag*{\Box} \]

Proof of Theorem \[1.1 \] We return to the notation of the introduction: \(X \) is a smooth proper toric \(T \)-model, \(T_{NS(X)} \) is the associated Neron-Severi torus and \(f : U \rightarrow X \) is the \(T_{NS(X)} \)-torsor constructed in [MP97, Proposition 5.6].

Since \(X \) is proper, it follows from, e.g., [Cox95] Lemma 1.4 that \(U \) has complement of codimension \(\geq 2 \) in the affine space in which it sits since the same thing is true upon passing to a separable closure. Since \(k \) has characteristic 0 and is thus infinite, it follows that \(U \) is even connected by lines. (In fact, [AD09] Proposition 5.12 gives conditions guaranteeing that this complement has codimension \(\geq d \), depending only on the fan of \(X^s \)). In any case, we can choose a point \(\hat{x} \) lifting \(x \).

By Proposition \[2.1 \] \(\pi \) is an \(\mathbb{A}^1 \)-cover and thus an \(\mathbb{A}^1 \)-fibration. Consider the long exact sequence in \(\mathbb{A}^1 \)-homotopy groups of \(\pi \), which exists by a formal argument in the theory of model categories (cf. [AD09] Remark 3.2). The higher \((i > 1) \) homotopy (sheaves of) groups of \(B_{\text{et}}T_{NS(X)} \) are trivial, and \(\pi_i^{\mathbb{A}^1}(B_{\text{et}}T_{NS(X)}) = T_{NS(X)} \) (again, see [MV99 §4 Proposition 1.16]). We then have a long exact sequence of groups (and pointed sets)

\[1 \rightarrow \pi_1^{\mathbb{A}^1}(U, \hat{x}) \rightarrow \pi_1^{\mathbb{A}^1}(X, \hat{x}) \rightarrow T_{NS(X)} \rightarrow \pi_0^{\mathbb{A}^1}(U) \rightarrow \pi_0^{\mathbb{A}^1}(X) \rightarrow \pi_0^{\mathbb{A}^1}(B_{\text{et}}T_{NS(X)}), \]

and for each \(i > 1 \), we have isomorphisms \(\pi_i^{\mathbb{A}^1}(U, \hat{x}) \cong \pi_i^{\mathbb{A}^1}(X, \hat{x}) \).

\[\tag*{\Box} \]
For the case \(i = 0 \), observe that there is a morphism \(X \to B_{\text{et}}T_{NS(X)} \) classifying \(f \). This induces a morphism \(\pi_0^{A^1}(X) \to \pi_0^{A^1}(B_{\text{et}}T_{NS(X)}) \). Using the \(A^1 \)-weak equivalence \(X \to Sing_{\text{et}}^1(X) \), there is an induced epimorphism \(\pi_0^s(Sing_{\text{et}}^1(X)) \to \pi_0^{A^1}(X) \) by [MV99, \S 2 Corollary 3.22]. Again using the fact that \(X \) is proper, we conclude \(\pi_0^s(Sing_{\text{et}}^1(X))(L) \) is \(X(L)/R \).

Since \(B_{\text{et}}T_{NS(X)} \) is \(A^1 \)-local, \(\pi_0^{A^1}(B_{\text{et}}T) = \mathcal{H}^1_{\text{et}}(T_{NS(X)}) \). Taking sections over finitely generated separable extensions \(L/k \) determines a morphism \(X(L)/R \to H^1_{\text{et}}(L, T_{NS(X)}) \) that coincides with the “obvious” such morphism gotten by restricting \(\pi \) to \(L \)-points of \(X \). The torus \(T_{NS(X)} \) is flasque (see, e.g., [CTS77, Proposition 6]) so [CTS77, \S 5 Corollaire 1] implies that the map \(X(L)/R \to H^1_{\text{et}}(L, T_{NS(X)}) \) is an isomorphism on sections over separable finitely generated \(L/k \).

Remark 2.3. The statement in Theorem 1.1 involving \(\pi_0^{A^1} \) provides an alternate proof of [AM09, Theorem 2.4.3] in the special case of smooth proper toric models. Furthermore, this statement can be strengthened slightly. Indeed, the multiplication morphism \(T 	imes T \to T \) gives rise to a rational map \(X \times X \to X \). Resolving indeterminacy, we get a morphism \(X' \to X \times X \) (that is a composite of blow-ups). One can check that this induces a composition on \(\pi_0^{A^1}(X)(L) \) for any \(L/k \) (coinciding with the composition on \(R \)-equivalence classes). The map of the proposition is in fact a homomorphism of abelian groups. One would like to show that \(\pi_0^{A^1}(X) \) can be equipped with the structure of a Nisnevich sheaf of abelian groups and that the map \(\pi_0^{A^1}(X) \to \mathcal{H}^1_{\text{et}}(T_{NS(X)}) \) is an isomorphism of sheaves.

References

