(1)(a) 74 (b) -4 (c) \[A + B = \begin{bmatrix} 0 & 2 & 0 \\ 7 & 3 & -4 \\ 1 & -2 & -1 \end{bmatrix} \], \(\det(A + B) = 6. \)

(2)(a) \[x = \begin{bmatrix} -16/13 \\ 7/13 \\ 0 \end{bmatrix} \]. (b) Yes, the row reduction in (a) shows that the rank is 3, which means \(A \) is nonsingular. (c) No, since \(A \) is nonsingular the system is always consistent no matter what \(b \) is, because \(Ax = b \) has solution \(x = A^{-1}b. \)

(3)(a) \[\begin{bmatrix} -1 \\ -9 \end{bmatrix} \] (b) \(S \) is closed under addition and scalar multiplication. To show this, suppose \(A, B \in S \). This means \(A_{11} = A_{22} \) and \(B_{11} = B_{22} \). But then \((A + B)_{11} = A_{11} + B_{11} = A_{22} + B_{22} = (A + B)_{22} \) which says that \(A + B \in S. \) Also, if \(A \in S \) and \(k \) is a real number then \((kA)_{11} = kA_{11} = kA_{22} = (kA)_{22} \) which says \(kA \in S. \)

(4) \[A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \]