6. Conclusions

There is a general preference for deletion. Cumulative complexity makes deletion relatively more probable, but only when the sources of complexity are local to one another. Non-local scenario: Non-local doubly-marked lags are not observed. Results of mixed logistic regression model with child, interaction of child and age, and cluster repair as dependent variable:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| contains.x | 1.460714 | 0.629303 | 2.321 | 0.02028 * |
| age | -0.003468 | 0.002658 | -1.305 | 0.19204 |

The results of this study support the predictions of the HG model:

- Prediction 1: Local cumulative complexity affects accuracy; Non-local scenario: No such effects are seen when sources of complexity are not local.
- Prediction 2: Elements in more marked forms are rendered less accurately than elements in less marked forms. Elements in less marked forms have a different pattern of repairs than elements in more marked forms. Deletion is therefore preferred to other combinations of repairs (e.g., epenthesis + feature violation).

5. Results: Repair effects in cases of local complexity

- E.g., onset cluster accuracy given different levels of target and actual coda complexity, such as
 /s/ vs. /kl/ onset clusters, which are of roughly equal input frequency (van de Weijer 1994),/ vs. /kl/ onset clusters...
 ...based on all target onset clusters...

4. Results: Lower accuracy in cases of local complexity

- In models containing both factors in either the fixed or random factors in either the fixed or random factors, such as
 \(\text{Estimate: Lower accuracy in cases of local complexity} \)
 \[\text{Estimate: Lower accuracy in cases of local complexity} \]

3. The data

I tested these predictions using data from the 12 Dutch-acquiring children in the CLPF database (Fikkert 1994, Levelt 1994) in CHILDES (MacWhinney 2000).

2. Locality and Cumulative Complexity Effects in Child Phonology: Evidence from Dutch

1. Locality and Cumulative Complexity Effects in Child Phonology: Evidence from Dutch

Karen Jesney – University of Massachusetts Amherst
Acknowledgements

Thanks to Joe Pater, John McCarthy, John Kingston, Kie Zuraw and the Summer/Fall 2010 UMass phonology group for valuable feedback and suggestions. This work has been supported by NSF grant BCS-0813829 to the University of Massachusetts Amherst, and by SSHRC Doctoral Fellowship #752-2005-1708.

References

Rose, Yvan & Greg Hedlund. 2009. PHON. software version 1.2.3rc4. [http://phon.ling.mun.ca/phontrac/].
