Label Complexity of Graph-Based Semi-Supervised Learning

Salman Avestimehr

In collaboration with Aamir Anis, Aly El Gamal, and Antonio Ortega

ITA 2/2/15
Semi-Supervised Learning

- \(n \) sample points from feature space (\(\mathbb{R}^d \)) according to \(p(x) \)
- The samples belong to two (or more) classes
- \(\ell \) sampled points are labeled (expert feedback)
 - Labels determine class membership
 - Typically \(\ell/n \) is small
- Objective: use both geometry of sample points and labels knowledge to construct a classifier for the rest of data
Graph Representation for SSL

- Representing the geometry in feature space with a graph
 - Vertices represent the sample points
 - Weighted edges represent the geometry or similarity between samples (e.g., distance based Gaussian Kernel)
 - Indicator function, $f = 1_S$, represents the classifier (assuming two classes)
- Note: labels are less likely to change across heavy edges, so the classifier $f = 1_S$ is expected to have “low bandwidth”
- Objective: use the graph and labels knowledge to find a “low bandwidth” classifier $f = 1_S$

```
\delta_S
```

```
f = 1_S
```

```
w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{||X_i - X_j||^2}{2\sigma^2}\right)
```
In this talk …

(Q1) How many labels should we get (label complexity)?
(Q2) Which vertices should we choose for labeling?
(Q3) How to construct the classifier, \(f = 1_S \), to label other vertices?

\[
W_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp \left(-\frac{\|X_i - X_j\|^2}{2\sigma^2}\right)
\]
Problem Formulation

- \(n \) sample points from feature space \((\mathbb{R}^d)\) according to \(p(x) \)
- Sample points belong to either class 1 or class 2, which are separated by a smooth hyper surface \(\delta_S \) (with radius of curvature > \(\tau \))
- The graph is constructed according to distance based Gaussian Kernel
- The classifier corresponding to \(\delta_S \) is represented by \(f=1_S \)

(Q1) How many labels are needed to construct \(f=1_S \) (label complexity)?
(Q2) Which vertices should we choose for labeling?
(Q3) How to construct the classifier, \(f=1_S \), to label other vertices?

\[
\delta_S
\]

\[
f = 1_S
\]

Distance-Based Gaussian Kernel:
\[
w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp \left(-\frac{\|X_i - X_j\|^2}{2\sigma^2} \right)
\]
Main Result

- The fraction of labels needed for constructing the classifier $f=1_S$ is “asymptotically” given by

 $$\int p(x) < \sup_{s \in \partial S} p(s) \, dx$$

Graph Representation for SSL: Geometry Information

- Vertices represent the sampled points
- Edges represent similarity between the samples

Distance-Based Gaussian Kernel

$$w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp \left(-\frac{\|X_i - X_j\|^2}{2\sigma^2}\right)$$

Kernel Bandwidth determines volume of neighborhood
Main Result

- The fraction of labels needed for constructing the classifier $f=1_S$ is “asymptotically” given by

$$\int p(x) < \sup_{s \in \partial S} p(s)$$

- The result demonstrates how label complexity depends on $p(x)$ and δ_S (e.g., low density boundaries are easier to learn)
Main Result

- The fraction of labels needed for constructing the classifier $f=1_S$ is “asymptotically” given by

$$\int p(x) dx < \sup_{s \in \partial S} p(s)$$

- The result demonstrates how label complexity depends on $p(x)$ and δ_S (e.g., low density boundaries are easier to learn).
- We also demonstrate how to achieve the bound (i.e., which vertices to choose for labeling and how to construct $f=1_S$).
How to prove the result?

- How many labels are needed to construct \(f = 1_S \)?

- Use graph sampling theory

\[
\delta_S
\]

Distance-Based Gaussian Kernel:

\[
w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|X_i - X_j\|^2}{2\sigma^2}\right)
\]
Graph Sampling Theory

- Consider a weighted undirected graph with signal f

- Graph Laplacian:

 $L = \frac{1}{n} (D - W)$

 where D is a diagonal degree matrix and W is the adjacency matrix.

- Bandwidth of graph signal:

 $\omega(f) = \max \lambda_i : u_i^T f \neq 0$

 where λ_i is the i-th smallest eigenvalue of L with eigenvector u_i.

- Theorem (Pesenson, 2008):

 # labels needed to construct $f = \max i : \lambda_i \leq w(f)$

 # Laplacian eigenvalues below $w(f)$
Two challenges …

- Using the graph sampling theorem we have

\[
\text{# labels needed to construct } f = \max_i : \lambda_i \leq w(f)
\]

- To characterize label complexity we need to
 1. Find the bandwidth of \(f=1_S \) (corresponding to the underlying classification boundary \(\delta_S \))?
 2. Find the eigenvalue distribution of graph Laplacian?

\[
\delta_S
\]
How to find the bandwidth of classifier?

- **Bandwidth Approximation Theorem (Anis-Gadde-Ortega, 2014):**

 \[
 w(f) = \lim_{m \to \infty} w_m(f) = \lim_{m \to \infty} \sqrt{m \frac{f^T L^m f}{f^T f}}
 \]

- So, we need to analyze

 \[
 w_m(1_S) = \sqrt{m \frac{1^T_S L^m 1_S}{1^T_S 1_S}}
 \]
Special case (m=1)

Theorem [Maier-Luxburg-Hein]

Under the conditions $\sigma \to 0$ and $n\sigma^{d+1} \to \infty$,

$$\frac{\sqrt{2\pi}}{n\sigma} L_1^T L_1 S \xrightarrow{p.} \int_{\partial S} p^2(s) ds,$$

where ds ranges over all $(d-1)$-dimensional volume elements tangent to the hyperplane ∂S.

- Note that: $L_1^T L_1 S = \sum_{i \in S, j \in S^c} w_{ij} = \text{cut}(S, S^c)$

δ_S minimum cut graph clustering results in a low density separation

$$w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{||X_i - X_j||^2}{2\sigma^2}\right)$$
Generalization to $m>1$

Theorem

If conditions 1–4 hold, then

$$m \sqrt{\frac{1^T S L^m 1_S}{1^T S 1_S}} = \omega_m(1_S) \xrightarrow{p.} \sup_{s \in \partial S} p(s),$$

Further, almost sure convergence holds if

$$\frac{n \sigma^{md+1}}{m C^m \log n} \to \infty.$$

1. Large sample size: $n \to \infty$,
2. Shrinking neighborhood volume: $\sigma \to 0$,
3. Large bandwidth estimate: $m \to \infty$,
4. Scaling laws: $m/n \to 0$, $m \sigma^2 \to 0$, $(1/\sigma)^{1/m} \to 1$, $(n \sigma^{md+1})/(m C^m) \to \infty$, where $C = 2/(2\pi)^{d/2}$.
Generalization to $m > 1$

Theorem

If conditions 1–4 hold, then

\[
\sqrt{\frac{1_T}{1_S} \frac{L^m 1_S}{1_T 1_S}} = \omega_m(1_S) \xrightarrow{p} \sup_{s \in \partial S} p(s),
\]

Further, almost sure convergence holds if

\[
\frac{n \sigma^{md+1}}{m C m \log n} \to \infty.
\]

1. Large sample size: $n \to \infty$,
2. Shrinking neighborhood volume: $\sigma \to 0$,
3. Large bandwidth estimate: $m \to \infty$,
4. Scaling laws: $m/n \to 0$, $m \sigma^2 \to 0$, $(1/\sigma)^{1/m} \to 1$, $(n \sigma^{md+1})/(m C^m) \to \infty$,
 where $C = 2/(2\pi)^{d/2}$.

Proof based on

a) Variance-bias decomposition of $w_m(1_S)$

b) Use results on concentration of U statistics ("Probability inequalities for sums of bounded random variables", by W. Hoeffding)

c) Establish convergence of the bias term
Two challenges …

- Using the graph sampling theorem we have

$$\text{# labels needed to reconstruct } f = \max i : \lambda_i \leq w(f)$$

- To characterize label complexity we need to

 ① Find the bandwidth of $f=1_S$ (corresponding to the underlying classification boundary δ_S)

 ② Find the eigenvalue distribution of graph Laplacian?

Semi-Supervised Learning

- n sampled points from feature space \mathbb{R}^d according to $p(x)$

- l sampled points are labelled (expert feedback), $l \ll n$

- Labels determine class membership

Goal: Find smooth classification boundary $f = 1_S$
Convergence of Eigenvalue Distribution

\(q_n(x) \): Density of eigenvalues of \(L \) equal to \(x \)
\(Q_n(t) = \int_{-\infty}^{t} q(x) \, dx \): Fraction of eigenvalues below \(t \)

Theorem

In the large sample and shrinking kernel bandwidth regime \(n \to \infty, \sigma \to 0, \)
\[
\mathbb{E} \{ Q_n(t) \} \to \int_{p(x)<t} p(x) \, dx
\]

Proof similar to the proof of Wigner’s semi circle law.

\[
w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|X_i - X_j\|^2}{2\sigma^2}\right)
\]
Main Result

$F_{m,S}$: fraction of labels required to reconstruct any function with bandwidth $\omega_m(1_S)$

Theorem

If conditions 1–4 hold, then

$$
\lim \mathbb{E} \{F_{m,S}\} \leq \int_{p(x) < \sup_{s \in \partial S} p(s)} p(x) dx,
$$

1. Large sample size: $n \to \infty$,
2. Shrinking neighborhood volume: $\sigma \to 0$,
3. Large bandwidth estimate: $m \to \infty$,
4. Scaling laws: $m/n \to 0$, $m\sigma^2 \to 0$, $(1/\sigma)^{1/m} \to 1$, $(n\sigma^{md+1})/(mC^m) \to \infty$, where $C = 2/(2\pi)^{d/2}$.
Problem Formulation

- \(n \) sample points from feature space \((\mathbb{R}^d)\) according to \(p(x) \)
- Sample points belong to either class 1 or class 2, which are separated by a smooth hyper surface \(\delta_S \) (with radius of curvature \(> \tau \))
- The classifier corresponding to \(\delta_S \) is represented by \(f=1_S \)

(Q1) How many labels are needed to construct \(f=1_S \) (label complexity)?
(Q2) Which vertices should we choose for labeling?
(Q3) How to construct the classifier, \(f=1_S \), to label other vertices?

\[
w_{ij} = K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp \left(-\frac{\|X_i - X_j\|^2}{2\sigma^2} \right)
\]
Which vertices to choose for labeling?

- From label complexity, we know the average number of vertices that should be chosen to construct \(f=1_S \).
- But, which vertices should we choose for labeling?
 - For each subset of nodes, there exists a cut-off frequency that represents the maximum bandwidth of graph signals that can be reconstructed from them.
 - We should choose the subset of vertices whose cut-off frequency is above the bandwidth of \(f=1_S \).
- How to find those vertices efficiently?

\[
\delta_S
\]
Problem Formulation

- \(n \) sample points from feature space \((\mathbb{R}^d)\) according to \(p(x) \)
- Sample points belong to either class 1 or class 2, which are separated by a smooth hyper surface \(\delta_S \) (with radius of curvature > \(\tau \))
- The classifier corresponding to \(\delta_S \) is represented by \(f = 1_S \)

(Q1) How many labels are needed to construct \(f = 1_S \) (label complexity)?
(Q2) Which vertices should we choose for labeling?
(Q3) How to construct the classifier, \(f = 1_S \), to label other vertices?

\[
K_{\sigma^2}(X_i, X_j) = \frac{1}{(2\pi\sigma^2)^d/2} \exp \left(-\frac{||X_i - X_j||^2}{2\sigma^2} \right)
\]
How to construct the classifier?

- We can simply find the graph signal with **lowest bandwidth** that matches the labeled samples
 - If the number of labeled samples is above label complexity, this algorithm is guaranteed to exactly construct \(f = 1_S \)
 - Recall that \(w_m(1_S) \xrightarrow{p} \sup_{s \in \delta S} p(s) \), so this algorithm essentially results in a low density separation
 - In general, this algorithm minimizes signal variations across heavy edges with cost term \(m \sqrt{f^T L_m f} \). (connected to other works in the literature, e.g. [*], where Laplacian is used for regularization)

\[\delta S \]

\[f = 1_S \]

[*] M. Belkin, P. Niyogi, V. Sindhwani “Manifold regularization: A geometric framework for learning from labeled and unlabeled examples”.
Summary and Concluding Remarks

• We characterized “label complexity” for graph based semi-supervised learning, by
 a) assuming there is an underlying smooth partition for data
 b) determining the # labeled samples needed to construct that classifier

• We also proposed a new approach for
 a) selecting samples for labeling (choosing vertices with highest cut-off frequency)
 b) classifying unlabeled data (finding the classifier with lowest bandwidth that matches the labeled data)

• A future direction:
 ❖ In general, there is no smooth boundary that perfectly classifies data. How to characterize the tradeoff between classification error and label complexity?
Questions?

References: